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 Antimony selenide (Sb2Se3) thin films were synthesized for potential application in 

optoelectronic devices using a low-cost, facile chemical bath deposition (CBD) technique. The 

as-deposited films exhibit a characteristic brown coloration, indicative of phase formation. The 

selenium precursor, sodium selenosulfate (Na2SeSO3), was synthesized via a reflux process 

involving elemental selenium and sodium sulphite (NaSO3), ensuring a controlled release of 

Se²⁻ ions during deposition. The materials were characterized for structural, optical, 

morphological and compositional properties.  X-ray diffraction (XRD) measurement revealed 

amorphous nature of the film’s material for as-synthesized films as well as films annealed at 

100 ℃ and 150 ℃ in the absence of selenium environment. The optical property showed that 

the material has capacity for high absorption in the UV and visible regions of the solar spectrum 

as indicated by low transmittance in these regions. The indirect bandgap was estimated to be 

1.12 eV for as-deposited material, 1.01 eV for 100 ℃ annealed film and 0.90 eV for 150 ℃ 

annealed sample. RMS roughness decreases uniformly with increase in annealing temperature 

as indicated by Atomic Force Microscopy (AFM) measurement. Scanning Electron Microscopy 

(SEM) confirmed the uniformity in the surface morphology of the material. Energy dispersive 

X-ray fluorescence spectroscopy (EDXRF) confirmed the presence of Sb and Se in the material. 

The high absorption in the visible and UV regions makes the material a good candidate for 

solar cell absorption layer and photodetectors. 
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1 Introduction 

Over the past four decades, Sb2Se3 has garnered significant 

attention owing to its remarkable material properties. Its appeal 

lies in its single stable crystalline phase, high optical absorption 

coefficient, favourable direct–indirect bandgap characteristics, 

efficient hole mobility, and a unique layered crystal structure 

characterized by weak van der Waals interlayer interactions 

and the absence of dangling bonds [1].  
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Sb2Se3 gained significant attention from researchers due to its 

favourable band gap (1–1.3 eV), high optical absorption 

coefficient (more than 105 cm−1 at visible light), high carrier 

mobility (approximately 10 cm2V−1s−1), and cost-effectiveness 

[2]–[8].  

Currently, Sb2Se3-based thin-film solar cells exhibited 

efficiency values of 10% [9]–[11]. However, according to the 

ideal Shockley-Queisser limit, their theoretical efficiency 

could surpass 31% [12].  
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The performance of Sb2Se3 solar cells is strongly influenced by 

the method used for their fabrication. Unlike many other 

semiconductors that require expensive vacuum-based 

fabrication, Sb2Se3 can be deposited using a range of chemical 

techniques, with chemical bath deposition (CBD) offering a 

particularly attractive combination of simplicity, scalability, 

and low processing temperature [13].  

In contrast to traditional absorber materials, Sb2Se3 features a 

distinctive quasi one-dimensional structure made up of 

[Sb4Se6]n ribbons [14]. These ribbons are connected through 

van der Waals interactions, lacking any dangling bonds, while 

the atoms (Sb-Se) within each ribbon are covalently bonded 

[14]–[17]. As a result, Sb2Se3 exhibits anisotropic 

characteristics, with its electrical, magnetic, and optical 

properties varying based on the direction of its crystal growth 

[18].  

Based on its electrochemical characteristics, Sb2Se3 has been 

proposed as a potential anode material for lithium-ion batteries 

[19]. In photoelectrochemical water splitting devices Sb2Se3 

has shown promising results [20]. Additionally, this binary 

compound has found applications in optical recording 

materials [21], thermoelectric devices [22], as well as in solar 

cells [23].  

In this study, Sb2Se3 thin films were synthesized via a chemical 

bath deposition (CBD) technique, employing Na2SeSO3 as the 

selenium source. The Na2SeSO3 precursor was prepared 

through a controlled reflux reaction involving elemental 

selenium powder and Na2SO3. Despite the potential advantages 

of the CBD route, there are limited reports in the literature on 

its application for the deposition of Sb2Se3 thin films. This 

deposition method offers significant advantages, including low 

cost, simplicity, high reproducibility, and scalability, rendering 

it a promising candidate for the large-scale fabrication of 

Sb2Se3-based photovoltaic devices. 

2 Experimental Methods 

The synthesis of Sb2Se3 is facilitated using the following 

chemical precursors and complexing agents: Na2SeSO3 serves 

as the selenium (Se) source, antimony trichloride (SbCl3) 

(sigma-Aldrich, ≥  99%) acts as the antimony (Sb) precursor, 

while sodium citrate (Fisher BioReagents ≥  99%) and 

ammonia (JHD 30%) are employed as complexing agents to 

stabilize the reaction solution. 

Na2SeSO3 was produced by refluxing via heating 8 grams of 

selenium powder (Aldrich, 99.9%) and 25 grams of sodium 

sulphite (sigma-Aldrich, ≥ 98%) in 200 ml of deionized water 

for four hours at a temperature of 90 ℃. This procedure is 

aimed at enhancing the reaction efficiency and yield. The 

chemical reaction is given by Equation 1: 

Na2SO3 + Se ⇋ Na2SeSO3   (1) 

After the mixture cooled to room temperature, unreacted 

selenium was filtered out. The resulting sodium selenosulfate 

solution was subsequently placed in a dark bottle to shield it 

from light, which helps maintain its stability and prevents 

degradation. This precaution is essential for preserving the 

compound's integrity for future applications or analysis. 

Due to its simplicity, reproducibility, low cost, and scalability, 

the chemical bath deposition method [24] was employed to 

grow high-quality Sb2Se3 semiconductor thin films on glass 

substrates. The deposition setup is shown in Figure 1.  

 

Figure 1: Set-up for chemical bath deposition of Sb2Se3 thin 

film 

0.8 g of SbCl3 was dissolved in 3.0 ml of acetone and stirred 

for 2 minutes. And this was followed by the addition of 36 ml 

of 1 M sodium citrate with stirring, then 20 ml of ammonia was 

added with continuous stirring and then 24 ml of sodium 

selenosulfate was added to the solution and stirred for 2 

minutes, and de-ionized water took the volume to 100 ml. The 

bath was maintained at 50° for 65 minutes.  

The film growth process is represented as follows: 

The formation of antimony (III) citrate complex is represented 

by Equation 2: 

SbCl3 + Na3C6H5O7 → Sb(C6H5O7) + 3NaCl (2) 

Antimony ion is released from antimony (III) citrate complex, 

Sb(C6H5O7) ⇌ Sb3+ + C6H5O7
3−  (3) 

Then hydrolysis of sodium selenosulfate releases 𝑆𝑒2−: 

Na2SeSO3 + 2OH− ⇌ Se2− + Na2SO4 + H2O (4) 

Then Sb3+and Se2− moved to the surface of the glass micro-

slide where they were deposited as Sb2Se3: 

2Sb3+ +  3Se2− ⇌ Sb2Se3(s)  (5) 

The slides were removed, rinsed in distilled water and dried in 

air. The as-deposited thin films were brown in colour and were 

kept in slide boxes. The samples were later annealed in air at 

temperatures of 100 ℃ and 150 ℃ after which they were 

characterized. 

The brownish Sb2Se3 thin films were subjected to 

comprehensive characterization to evaluate their structural, 

optical, compositional, and morphological properties. 
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Crystallographic analysis was conducted using an XRD-6000 

diffractometer (Shimadzu Co., Japan) with Cu-Kα radiation (λ 

= 1.5406 Å). Optical properties, including absorbance and 

reflectance spectra in the 200–1100 nm wavelength range, 

were recorded using a PerkinElmer UV-Vis-NIR 

spectrophotometer. Elemental composition was assessed via 

Energy Dispersive X-ray Fluorescence (EDXRF) using 

instrumentation from Thermo Fisher Scientific. Surface 

topography was examined utilizing a Stromlingo DIY Atomic 

Force Microscope (AFM). Surface morphology was further 

investigated with a Thermo Scientific Axia ChemiSEM (2023 

model, USA). 

3 Results and Discussions 

There is no diffraction peaks observed from the XRD plot for 

as-deposited Sb2Se3 film and sample annealed at 150 ℃ under 

air without selenization indicating that the films are in an 

amorphous state as shown in Figure 2a. After annealing at 150 

℃ under air without selenization, the film material remained 

amorphous. There have been literature reports of similar results 

of Sb2Se3 thin film materials [25]–[27]. A broad shallow hump 

is observed at the lower angle; this is due to the glass nature of 

the material and glass substrate [27]. 

(a)  

(b)  

Figure 2: (a) XRD images of as-deposited and annealed 

Sb2Se3 thin film at 150 ℃ (b) EDXRF of Sb2Se3 thin film 

material 

The compositional study was done with energy dispersive x-

ray fluorescence (EDXRF), which confirmed the presence of 

Sb and Se in the Sb2Se3 film material Figure 2b. From the 

figure, Sb has a count of about 300 and Se has a count of  200, 

but the expected ratio of Sb:Se is 2:3 or Se/Sb is 1.5. The ratio 

of Se/Sb from the count is 0.67 which is lesser than the 

expected ratio of 1.5 showing that there is lower concentration 

of Se during production of the film material, this could be due 

to high volatility of Se caused by substrate temperature. 

(a)  (b)  

(c)  (d)  

Figure 3: (a) A graph of  optical transmittance  against 

wavelength for as-deposited and annealed Sb2Se3 thin film 

materials (b) a  plot of optical absorbance against wavelength 

for as-deposited and annealed Sb2Se3 thin film materials (c) a 

graph of optical reflectance against wavelength for as-

deposited and annealed Sb2Se3 thin film materials (d) a graph 

of indirect energy bandgap Vs photon energy for as-deposited 

and annealed Sb2Se3 thin film materials. 

A graph of optical transmittance against wavelength for the as-

deposited and annealed Sb2Se3 thin film materials is shown in 

Figure 3a.  From the plot the material shows zero transmittance 

thus high absorption at low wavelengths of λ < 500 nm. After 

the absorption edge the transmittance rose indicating decrease 

in absorbance towards the near infrared region of the spectrum. 

Figure 3b presents a plot of optical absorbance against 

wavelength for as-deposited and annealed Sb2Se3 thin film 

materials. The absorbance for both annealed and as-deposited 

samples steadily decreased from UV to visible and maintained 

a relatively constant value down to near infrared region of the 

spectrum. The 150 ℃ film exhibited the best absorbance with 

a value of 50 %, followed by 100 ℃ film with a value of about 

45% and finally the as-deposited film with about the same 

value as 100 °C grown film in the UV region of the spectrum. 

As shown in Figure 3c is a plot of optical reflectance against 

wavelength for as-deposited and annealed Sb2Se3 thin film 

materials. The reflectance rises from the infrared into the 

visible with a value of 78 % for as-synthesized as well as 100 

℃ films and 65 % for 150 ℃ film. The reflectance maintained 

this relatively high value into the UV region of the spectrum 

for the three films. 
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Indirect energy bandgap was confirmed by the graph of α1/2 vs 

photon energy for as-deposited and annealed Sb2Se3 thin film 

materials given in Figure 3d. This method has been reported by 

several literatures [28]–[30].  

From the plot the un-annealed sample was estimated with a 

value of 1.12 eV, followed by the 100 ℃ grown film with a 

value of 1.01 eV and finally 150 ℃ sample with a value of 0.90 

eV. These values agree with reported values for indirect 

bandgaps 1.10 to 1.85 eV by [31]–[34]. The variation in energy 

bandgap can be linked to the deposition method and the 

presence of grain boundaries. Specifically, factors such as 

temperature, film thickness, crystallinity, grain size, and defect 

states influence the band gap [35]. Elevated temperatures 

enhance the growth and quality of Sb2Se3 by increasing grain 

size and reducing defect states.  

Post deposition annealing reduces the bandgap of the film 

materials; this reduction may be attributed to increase in 

particle size due to quantum confinement [36]. The materials 

have a suitable bandgap for absorption of photon energy right 

from the infrared region of the solar spectrum. 

 (a)(i)   (ii)    

(b)    

 

Scanning electron microscopy (SEM) images of different 

magnifications of (i) as-deposited Sb2Se3 thin film materials, 

and (ii) annealed Sb2Se3 thin film material are presented in 

Figure 4a. From the micrographs, it is obvious that as-

synthesized films are smooth without cracks indicating 

amorphous nature of the films; this was evidenced by the XRD 

results of these samples. Annealed films showed similar trends 

except for the formation of artefacts which may be caused by 

particles from the oven. 

To further analyze the morphology of the materials, we carried 

out atomic force microscopy (AFM) study of the thin film. 

Figure 4b presents the two and three dimensions of the AFM 

images of as-synthesized and annealed Sb2Se3 thin film 

materials depicted in Figure 4b. The film images of the samples 

became smoother with higher temperatures. Also bar chart of 

root mean square (RMS) roughness of AFM images of as-

deposited and annealed Sb2Se3 thin film materials buttressed 

this fact as shown in Figure 4c. From the chart, the RMS 

roughness decreases uniformly with an increase in temperature, 

i.e. the surface becomes finer as annealing temperature 

increases, and grain sizes reduces. As-synthesized sample has 

RMS roughness value of 45.3 pm which decreases to 38.8 pm 

for 100 ℃ film material. With a higher temperature of 150 ℃ 

the roughness reduced to 37.8 pm. 

Sb2Se3 thin-film solar cells are currently less efficient 

compared to commercialized technologies like CdTe and CIGS 

[37]; however, they present notable advantages that make them 

attractive for future photovoltaic applications. One of their key 

strengths lies in their reduced environmental impact, as Sb2Se3 

does not rely on toxic or scarce elements. Additionally, the 

materials used in these cells are more abundant and potentially 

more cost-effective, contributing to better long-term 

sustainability.  

These solar cells also exhibit good long-term thermal and 

chemical stability, which is essential for maintaining 
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Figure 4: (a) SEM image of different magnifications of (i.) as-deposited Sb2Se3 thin film materials ii. annealed Sb2Se3 thin film 

materials (b) Two and three dimensions of the AFM images of as-deposited and annealed Sb2Se3 thin film materials (c) Bar 

chart of RMS roughness of AFM images of as-deposited and annealed Sb2Se3 thin film. 
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performance over time. As a result, intensive research efforts 

are underway to improve their power conversion efficiency and 

develop scalable fabrication methods. With continued 

technological advancements, Sb2Se3 is increasingly recognized 

as a strong contender in the pursuit of next-generation, eco-

friendly solar energy solutions. 

4 Conclusions 

In this work, Sb2Se3 thin films were synthesized via the 

chemical bath deposition (CBD) technique, and the influence 

of post-deposition annealing temperature on their 

morphological, structural, and optical characteristics was 

systematically examined, targeting their potential use as 

absorber layers in photovoltaic devices. X-ray diffraction 

(XRD) analysis indicated that the films remained amorphous 

in their as-deposited state as well as after annealing at 100 °C 

and 150 ℃ in the absence of selenization. Optical 

measurements confirmed strong absorption in both the 

ultraviolet (UV) and visible regions of the solar spectrum. The 

material exhibited an indirect optical bandgap, which 

progressively decreased with annealing: 1.12 eV for the as-

grown film, 1.01 eV post-annealing at 100 ℃, and 0.90 eV 

after annealing at 150 ℃. Atomic force microscopy (AFM) 

showed a consistent decrease in root mean square (RMS) 

surface roughness with rising annealing temperature, while 

scanning electron microscopy (SEM) supported the amorphous 

structure. Energy dispersive X-ray fluorescence (EDXRF) 

analysis confirmed the presence of antimony (Sb) and selenium 

(Se) in the composition. The strong absorption in both UV and 

visible regions highlights the material’s potential for use in 

solar cell absorber layers and photodetectors. 
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