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 This study presents the sol-gel synthesis of MgO using Mg(NO3)2.6H2O and MgCl2.H2O 

precursors. The as-synthesized MgO from both precursors were annealed at 800℃ for 2 hours 

to improve their quality. The annealed samples were analyzed employing X-ray diffraction 

(XRD) and ultraviolet-visible (UV-VIS) spectrophotometry to evaluate how precursor type 

affects the structural and optical properties of MgO nanoparticles. XRD investigation indicated 

a polycrystalline cubic structure of MgO nanoparticles from both precursors, with preferred 

orientation in the (210) plane for the chloride-derived sample and in the (200) plane for the 

nitrate-derived sample. The estimated average crystallite size of MgO from the chloride is 

approximately twice that from the nitrate, with specific values of ~ 15 nm and ~ 7 nm 

respectively. UV-VIS diffuse reflectance spectrophotometry revealed that the band gap energies 

of the MgO from both salts were similar with specific values of 5.69 eV and 5.75 eV for the 

nitrate-derived sample and the chloride-derived sample, respectively. 
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1 Introduction 

Extensive progress has been made in the study of creating and 

utilizing nanomaterials over an extended period of time [1] –

[5]. The exceptional physical properties of nanoparticles make 

them highly significant for several technological applications. 

The unique characteristics of nanomaterials, such as enhanced 

damping [6], mechanical stability [7], improved thermal 

conductivity [8], and increased strength [9], make them very 

appropriate for various technological applications. 

Magnesium oxide (MgO) exhibits a face-centered cubic (FCC) 

NaCl-type crystal structure with space group Fm-3m [10]. The 

unique features of magnesium oxide nanoparticles, such as 
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chemical inertness, electrical insulation, optical transparency, 

high temperature stability, high thermal conductivity, high 

dielectric constant, and biocompatibility, make it an intriguing 

functional material [10] – [12]. These qualities have made 

MgO a potential material for numerous scientific and industrial 

applications such as in photocatalysis, refractory materials, 

heating apparatuses, optical coatings, sensors, water treatment, 

antimicrobial activity, adsorbent, and additive in fuel [13] – 

[18]. 

MgO nanoparticles have been synthesized by various 

techniques such as thermal evaporation [19], spray pyrolysis 

[20], laser vaporization [21], chemical vapour phase transport 

[22], sol-gel [23], and hydrothermal reaction [22]. Among 

these techniques, sol-gel has become the most fascinating 

synthesis technique due to its ability to retain a good 
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stoichiometric ratio, cost effectiveness, small and homogenous 

particle sizes at relatively low temperature, and ability to 

maintain chemical uniformity at the molecular level [23] – 

[27]. Many factors such as annealing temperature, pH, catalyst, 

precursor solution and environmental conditions affect the 

properties of materials produced by the sol-gel technique [28]. 

Balakrishnan et al. [8] investigated the microstructure, optical, 

and photocatalytic properties of MgO nanoparticles 

synthesized via the combustion method using magnesium 

nitrate as a precursor. Mamta et al. [9] also studied the 

synthesis of nanostructured MgO by sol-gel technique 

employing magnesium nitrate as precursor and its 

characterization. Muhammad Umair [29] in the same vein 

reported on the synthesis and characterization of nanoparticles 

of MgO using MgCl2 as a starting material. 

In the present work, the influence of two different precursors 

(magnesium nitrate and magnesium chloride) on the crystallite 

size, strain , dislocation density δ, and the optical properties 

of sol-gel synthesized MgO nanomaterials has been 

investigated, as such a comparative study has not, to our 

knowledge, been previously reported in a single publication. 

The attained outcomes provided useful information regarding 

structural and optical properties of MgO, that are highly helpful 

for optimizing MgO nanomaterials for applications in 

catalysis, sensing, or optoelectronics. This study provides 

novel insights that may guide future research on MgO-based 

nanomaterials. 

2 Experimental method 

2.1 Materials 

Magnesium nitrate hexahydrate [Mg (NO3)2.6H2O] (Sigma 

Aldrich, 98.0%), here referred to as MN and magnesium 

chloride monohydrate [MgCl2.H2O], (Sigma Aldrich, 98.6%), 

Citric acid [C6H8O7] (Sigma Aldrich, 97.2%), and deionized 

water. Other materials used include an electrical hotplate with 

a magnetic stirrer, magnetic stirrer rods, beakers and a Ph 

meter. 

2.2 Synthesis Technique 

Magnesium nitrate hexahydrate (Mg (NO3)2.6H2O) labeled as 

MN and magnesium chloride monohydrate (MgCl2.H2O) 

referred to as MC were used as starting materials to prepare 

different precursor solutions for the synthesis of MgO. The 

synthesis starting solutions were prepared by dissolving 0.5 

mol of each of the magnesium salts and 1.5 mol of citric acid 

(C6H8O7) in two 30 ml of deionized water into different beakers 

to form precursor solutions.  

The transparent solutions were stirred continuously for 3 hours 

at temperature of 80℃ on a magnetic stirrer with heating 

capability to form a yellow precipitate. Then, the stabilized 

yellow precipitate was constantly heated and stirred at a 

temperature of 95 ℃.  

During the process, the viscosity and colour changed as the 

precipitate turned to viscous gel. The gel was further calcined 

to 120 ℃ for 2 hours and a xerogel material was gained. The 

resulting xerogel material was ground into fine powders using 

mortar and pestle and annealed at 800 ℃ for 2 hours in muffle 

furnace. The resulting powders from both precursors were 

further ground into fine powder samples, kept in a sealed 

container for characterizations. The proposed chemical 

reactions for the formation of MgO from both MN and MC 

precursors are presented in Equations 1 –  8. 

Upon adding citric acid to Mg(NO3)2.6H2O, magnesium citrate 

is produced as follows:  

Mg(NO3)2.6H2O(aq) + C6H8O7(aq) C6H6MgO7(s) (s)  + 

7H2O(l) + N2(g) + 5/2O2(g)   (1) 

With further stirring and heating to 95℃, magnesium 

hydroxide is produced from magnesium citrate as follows: 

C6H6MgO7(s) + 7H2O(l)  Mg(OH)2(s) + C2H4(g) 

+ 4CO(g) + 1/2O2(g) + 7H2(g) + 7H2O(l)  (2) 

On calcinations at 120 C, water molecules will be expelled in 

the form of steam as follows:  

Mg(OH)2 +7H2O(l)  Mg(OH)2 + 7H2O(g) (3) 

On further heating at elevated temperature magnesium 

hydroxide decomposes to produce magnesium oxide thus: 

Mg(OH)2  MgO(s) + H2O(g)  (4) 

For the formation of MgO from magnesium MgCl2.H2O and 

citric acid, similar steps are obtained as follows:  

MgCl2.H2O(aq) + C6H8O7(aq)   C6H6MgO7(s) + H2O + 

H2(g) + Cl2(g)    (5) 

With further stirring and heating to 95℃, magnesium 

hydroxide is produced from magnesium citrate as follows:  

C6H6MgO7(aq) + H2O(l)  Mg(OH)2(s) + C2H4(g) 

+ 4CO(g) + H2O(l) + 1/2O2(g)   (6) 

On calcinations at 120℃, water molecules will be expelled as 

steam as follows: 

Mg(OH)2(s) + H2O(l) Mg(OH)2(s) + H2O(g) (7) 

On further heating at elevated temperature magnesium 

hydroxide decomposes to produce magnesium oxide thus:  

Mg(OH)2   MgO(s) + H2O(g) (8) 

2.3 Characterizations 

The crystal feature of fabricated materials was considered 

employing X-ray diffraction (XRD) using Bruker AXS 

diffractometer with Cu-K wavelength of 0.15418 nm. The 

optical studies of various samples were performed using UV-

Vis spectrophotometry with a Perkin-Elmer Lambda 7505 

spectrophotometer, which was used to assess the absorbance, 

transmittance and diffuse reflectance spectra of various 

samples.  

Heating 

Stirring +  

Heating at 95℃ 

Calcinations at 

120℃ 

Annealing at 800℃ 

Calcinations at 120℃ 
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3 Results and Discussions 

3.1 Structural Investigation 

Figure 1 shows the X-ray diffraction patterns of MgO 

nanoparticles synthesized with magnesium nitrate (MN) and 

magnesium chloride (MC) precursors. Both patterns clearly 

exhibit the characteristic diffraction peaks of cubic phase MgO 

at 2 angles of 32.56, 37.84, 42.83, 50.54, 62.23, 74.45, 

78.11 which correspond to the (111), (200),  (210), (211), 

(311), (321) and (400) lattice planes, respectively, according to 

the standard Joint Committee on Powder Diffractions and 

Standards (JCPDS) reference file No.: 761363. The space 

group of the structure is Fm-3m. No other impurity phases were 

discovered within the XRD patterns.  

The spectra show a preferential orientation in the (200) plane 

for the MgO nanoparticle from MN and in the (210) plane for 

MgO nanoparticles from MC respectively. Comparatively, 

Figure 1 shows that MgO from MC has stronger and narrower 

peaks than MgO from MN, indicating better crystallinity.  

The values of the lattice parameters calculated from (210) and 

(200) preferential orientations using Equations 10 and 11 were 

found to be a = b = c = 0.47 nm for MgO material synthesized 

with MN precursor, and a = b = c = 0.48 nm for MgO 

synthesized with MC precursor, which are close to the lattice 

parameter value of a = b = c = 0.48 nm from the reference 

JCPDS 761363 file.  

The average crystallites sizes calculated using Scherrer’s 

Equation 11 was found to be 7 nm and 15 nm for MgO from 

MN and MC precursors, respectively. Chloride derived MgO 

nanoparticles show enhanced crystallinity, and this is 

experimentally revealed by an upsurge in the intensity of the 

peak at (210) and the reduction in the full width at half 

maximum (FWHM) as shown in Figure 1.  

The diffraction peak intensity was measured by scanning in the 

2 range in 20 to 90 with a step size of 0.05. The interplanar 

spacing (d) and the lattice parameters of the crystals were 

calculated according to Equations 9 and 10 [30] – [31] 

𝑑(ℎ𝑘𝑙) =  
𝑛𝜆

2𝑠𝑖𝑛𝜃
    (9) 

here d stands for interplanar spacing, (hkl) represent Miller 

indices for each given plane,  is the Bragg’s angle,  is the 

wavelength of the X-ray and n is the order of diffraction.  

𝑎  =  𝑑(ℎ𝑘𝑙)√ℎ2 + 𝑘2 + 𝑙2   (10) 

where a is the lattice parameter a = b = c for a cubic crystal. 

The crystallite sizes of nanoparticles were calculated 

employing Scherrer’s Equation 11 [31] – [33] 

𝐷 =  
𝑘𝜆

𝛽𝑐𝑜𝑠𝜃
    (11) 

where D is the crystallite sizes (in nm), k is a constant named 

shape factor = 0.94,  is the wavelength of X-ray radiation ( 

= 0.15418 nm),  is the full width at half maximum (FWHM) 

of the given peak and  is the Bragg angle for the diffraction 

peak under consideration. Various strains in the crystals trigger 

shifts within peaks within diffraction lines. This micro-strain 

prompted distortion in the lattices, hence, the peaks in XRD 

patterns shift from their normal symmetric shape. This micro 

strain also triggered by tensile and compressive forces 

increases the FWHM of diffraction peaks on several occasions. 

The micro strain, which is the degree of distortion present in 

MgO crystalline lattice was calculated using Equation 12 [29], 

[30]. 

𝑆𝑡𝑟𝑎𝑖𝑛 (Ɛ) =  
𝛽𝑐𝑜𝑠𝜃

4
   (12) 

Where θ is the 2θ value of the peak, the dislocation density,  

which is the total length of dislocation lines per unit volume in 

MgO nanoparticle was found using the Equation 13,  

𝛿 =  
1

𝐷2
     (13) 

where D is the crystallite size,  is the Bragg’s angle; n is the 

order of diffraction. 

Tables 1 and 2 summaries the variations of structural 

parameters of MgO synthesized with MN and MC precursors. 

From Table 1, it is revealed that MgO synthesized with MC 

precursor has higher values of crystallite size compared with 

that synthesized with MN.  

As Table 2 illustrates, a decrease in lattice defects leads to a 

reduction in internal strain and dislocation density inside the 

material. Consequently, the MC grown sample exhibits better 

crystallization than the MN grown sample.  From Table 2, the 

average micro strain for MgO nanoparticles were 0.0057 and 

0.00048 for nitrate and chloride precursors respectively, while 

the average dislocation densities for MgO are 0.0261 nm-2 and 

0.00048 nm-2 for MN and MC precursors respectively. 

Table 1: Values of 2, inter-planar spacing, FWHM, 

crystallite size and Miller indices for MgO nanoparticles from 

nitrate (MN) and chloride (MC) precursors 

2 

(Deg) 

MN 

FWHM 

 (Rad) 

MN 

Crystallite 

size D (nm) 

MN 

d-

spacing 

(nm) 

MN 

hkl 2 

(Deg)  

MC 

FWHM 

(Rad) 

MC 

Crystallite 

size D (nm) 

MC 

d 

spacing 

(nm) 

32.56 0.0286 5.06 0.2750 (111) 32.87 0.0120 12.07  0.2726 

37.59 0.0275 5.56 0.2395 (200) 37.85 0.0114 16.08 0.2726 

42.51 0.0157 9.91 0.2126 (210) 42.83 0.0132 13.47 0.2111 

50.51 0.0339 4.72 0.1807 (211) 50.54 0.0133 11.78 0.1806 

61.80 0.0191 8.89 0.1501 (311) 62.23 0.0111 15.10 0.1492 

74.15 0.0296 6.14 0.1279 (321) 74.45 0.0100 18.05 0.1274 

78.11 0.0246 7.58 0.1223 (400) 78.56 0.0104 17.84 0.1218 

Therefore, MgO from MC with a reduced dislocation density 

can provide a superior lattice and thermal expansion, making it 

a promising material for high-power radio frequency (RF) 

devices and ultraviolet (UV) electro-optical applications [34]. 

Table 1 and 2 show all calculated structural parameters of the 

two MgO samples. 
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Table 2: Values of, hkl, micro strain  and dislocation density 

, for nitrate (MN) and chloride (MC) derived samples 

(hkl) Strain,  

MN 

Dislocation 

density,   

nm-2 MN 

Strain,  

MC 

Dislocation 

density,   

nm-2 MC 

(111) 0.0069 0.0391 0.0030 0.0065 

(200) 0.0065 0.0323 0.0023 0.0039 

(210) 0.0037 0.0102 0.0031 0.0055 

(211) 0.0077 0.0446 0.0030 0.0072 

(311) 0.0041 0.0127 0.0024 0.0044 

(321) 0.0059 0.0265 0.0020 0.0031 

(400) 0.0048 0.0174 0.0026 0.0032 

 

Figure 1: XRD pattern of MN and MC derived MgO 

nanoparticles 

3.2 Optical Analysis 

Figure 2(a) presents the graphs of absorbance versus 

wavelength of MgO nanoparticles synthesized from MN and 

MC precursors. The graphs show that absorbance decreases 

from a value of ~0.25 to 0.03 as photon wavelength increases 

in the range of 200 – 1200 nm (which covers the ultraviolet to 

near infrared section of the electromagnetic spectrum) for MN 

sample. Afterward, the absorbance increases from ~0.03 to 

0.25 in the wavelength range of 1200 – 2000 nm. 

The MC sample generally has higher absorbance values than 

MN sample with values decreasing from ~0.4 to ~0.1 as photon 

wavelength decreases in the range of 200 nm – 1800 nm after 

which it slightly increases to 0.15 as the wavelength increases 

from 1800 nm to 2000 nm. MC derived MgO can therefore be 

a much better absorber of electromagnetic radiation than the 

MN derived sample, suggesting that it may be a preferred 

candidate for UV-Vis filter applications. There is an observed 

sharp absorption peak at a wavelength of ~1400 nm in both 

MgO materials. The origin of this absorption peak cannot be 

explained at the moment, although it is suspected to be as a 

result of unknown impurity. Further studies will be required to 

unravel the true origin. 

The band gap energies were evaluated using the Kubelka-

Munk function F(R),  as described in Equations 14 and 15 

[35] – [37]. 

𝐹(𝑅∞) =  
𝐾

𝑆
    (14) 

here R stands for reflectance, S represent the scattering 

coefficient, and K signifies absorption coefficient, F(R) is 

connected to the incident photon energy by the Tauc relation 

[35] – [36]. 

{𝐹(𝑅∞)ℎ𝜈}𝑛 = 𝐴(ℎ𝜈 −  𝐸𝑔)   (15) 

where A is a constant, h represent photon energy, Eg stands 

for band gap energy and n transition mode (n = ½, n = 2 for 

allowed direct transition, n = 3 signify direct forbidden 

transition, and n = 3/2 represent indirect forbidden transition. 

but the value n = 2 was employed in this work. 

(a)  (b)  

(c)  (d)  

Figure 2: (a) Absorbance (b) Transmittance (c) Reflectance 

spectra versus wavelength (d) {F(R)h}2 against photon 

energy for MgO nanoparticles synthesized with MN and MC 

precursors 

What makes a substance unique is its complicated dielectric 

constant. The imaginary part illustrates how a dielectric 

material absorbs energy from an electric field, while the real 

part illustrates how much the substance will slow down light. 

The loss factor, or the ratio of the imaginary to the real parts of 

the dielectric constant, can be found out by examining the real 

and imaginary parts of the dielectric constant. Equations 16 and 

17 are used to calculate the dielectric constant's real and 

imaginary portions. 

Ɛ𝑟 =  𝑛2 − 𝑘2    (16) 

£𝑖 = 2𝑛𝑘    (17) 

Where k is the extinction coefficient and n are the refractive 

index of the material. The absorption coefficient () associated 

with the strong absorbance (A) and the thickness (t) of the 

material is given by Equations 18 and 19 [38] – [44]. 

𝛼 =  2.303
𝐴

𝑡
    (18) 

𝛼 =
4𝜋𝑘

𝜆
     (19) 

where  is the wavelength of the incident electromagnetic 

radiation. The refractive index was calculated from Equation 

20 [39] – [44]. 
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𝑛 =  
1+𝑅1/2

1−𝑅1/2
    (20) 

here R stands for reflectance while the transmittance (T), the 

reflectance (R) and the absorbance (A) are related using 

Equation 21. 

𝑇 + 𝑅 + 𝐴 = 1    (21) 

The graphs of transmittance versus wavelength for various 

MgO nanoparticles employing diverse precursors are shown in 

Figure 2(b). The results show that the transmittance of MgO 

nanoparticles from the MN precursor increases from ~43% as 

the photon wavelength increases from 200 nm with a maximum 

value of 92% at 1100 nm after which it decreases to about 57% 

at 2000 nm.  

For the MC sample, the transmittance increases more 

continuously from ~30% at 200 nm to a maximum value of ~ 

78% at 1900 nm but for the sudden absorption peak at around 

1400 nm and then slightly decreases to 56.69% at 1956 nm. 

The MgO nanoparticle from the nitrate precursor therefore has 

overall higher transmittance in the wavelength range of 200 – 

2000 nm compared to the MgO nanoparticles from the chloride 

precursor. The MgO nanoparticles were seen to be significantly 

transparent in the visible section of wavelength and can be used 

as an important material with wide applications such as in 

optoelectronic devices, photocatalytic system and anti-

reflection coating as discussed in the literature.  

Figure 2(c) illustrates the diagram of reflectance against the 

wavelength’s spectrum for MgO nanoparticles from both 

precursors. The results show that reflectance of MgO 

nanoparticle from the nitrate, MN precursor decreases from ~ 

18% to ~4% as the wavelength increases from ~400 nm to ~ 

1000 nm, which covers the visible and near the onset of 

infrared region of the electromagnetic spectrum. Thereafter, 

the reflectance increases from ~4.5% to 14.5% in the 

wavelength range of ~1000 – 1300 nm. MgO nanoparticle from 

chloride, MC precursor generally has higher reflectance values 

than the MN sample with the value decreasing from ~ 20 – 

12.5% in the wavelength range from 200 nm to  1300 nm. 

Using the Tauc relation of Equation 15 and the Kubelka-Munk 

Equation 14 based on optical absorption spectra, the materials' 

optical band gap energies, Eg, were calculated. Figure 2(d) 

displays the (F(R)h) 2 versus h plots of MgO nanoparticles 

synthesized from MN and MC precursors annealed at 800 ℃. 

By extending the linear portion of the plot (F(R)hv)2 against 

h, to the h axis where F(R) equals zero, one may find the 

optical band gap Eg value. It was discovered that the two MgO 

materials' optical band gap values were similar, with particular 

values of 5.69 eV and 5.75 eV for the MN and MC precursors, 

respectively. 

The degree of crystallinity may influence the difference in band 

gap energy. The band gap values are consistent with those of 

Kumar et al. [19], who measured the MgO band gap energy at 

various temperatures ranging from 5.0 eV to 6.2 eV. The bulk 

value of 7.80 eV found by Kurth et al. (7.8 eV) [46] is greater 

than the band gap values found for both MgO materials from 

the precursors in the current work. The technique used and, 

consequently, the distribution of defects in the material could 

be the cause of this observed smaller band gap. 

(a)  (b)  

(c)  

Figure 3: (a) Refractive index, n (b) Absorption coefficient, α 

(c) Extinction coefficient, k against photon energy for MgO 

nanoparticles from MN and MC precursors 

Figure 3(a) shows the refractive index of MgO nanoparticle 

from both precursors as a function of photon energy. The 

refractive index rises as the photon energy increase for MgO 

nanoparticles from MN and MC precursors. It is also observed 

that the refractive index of MgO from MN increases from 1.6 

to 2.7 in the photon energy range of 1.0 eV to 6.0 eV while the 

refractive index, n of MgO from MC precursor increases from 

2.1 to 2.6 within the UV-visible energy region and maintains a 

constant value of 2.6 from 3.0 eV to 6.0 eV. The higher value 

of refractive index, of MgO nanoparticles from MC precursor 

in this photon energy region is important.  

Refractive index is a measure of how light propagates through 

a material. The formula n = c/v, where c is the speed of light in 

vacuum, states that the higher the refractive index, the slower 

the speed of light propagation [41]. As a result, light from the 

MC precursor will travel through MgO more slowly. 

(a)  (b)  

Figure 4: (a) Real dielectric εr (b) Imaginary dielectric εi 

versus photon energy of MgO nanoparticles from MN and 

MC precursors 

The plots of absorption coefficient (α) versus photon energy for 

the MgO nanoparticles made from various precursors are 

shown in Figure 3(b). When the photon energy of MgO 

nanoparticles derive from MN and MC precursors increases, 

the absorption coefficient, α, also rises. The absorption 

coefficient of MgO from MN precursor increases from 0.1 cm-
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1 to 0.6 cm-1 in the photon energy range of 1.0 eV to 5.5 eV and 

then sharply increases from 0.6 cm-1 to 0.8 cm-1 within the 

energy range of 5.5 to 6.0 eV, according to the graphs. In 

contrast, MgO from MC precursor increases in the photon 

energy range of 1.0 eV to 5.5 eV from 0.3 cm-1 to 0.8 cm-1 and 

then sharply increases from 0.8 cm-1 to 1.2 cm-1 in the range of 

5.5 eV to 6.0 eV. 

A graph of MgO nanoparticles from MN and MC precursors' 

extinction coefficient, k, vs photon energy is displayed in 

Figure 3(c). The observed pattern indicates that the extinction 

coefficient, k, for MgO synthesized from MN precursor rises 

as photon energy rises in the range of 1.0 eV to 3.0 eV, stays 

relatively constant from 3.0 eV to 5.5 eV, and then rises once 

more.  

Conversely, for MgO synthesized from MC precursor, the 

extinction coefficient decreases as photon energy rises from 1.0 

eV to 5.5 eV and then increases as the energy increases 5.5 eV 

to 6.0 eV. The increase in the extinction coefficient, k of MgO 

from MN precursor within the 1 – 3 eV energy range indicates 

a rise in light loss due to scattering and absorption. Conversely, 

the decrease in the extinction coefficient of MgO from MC 

precursor in the energy range of 1.0 – 5.5 eV, suggests a 

decrease in the fraction of light lost due to scattering and 

absorption. 

The change in photon energy (h) for MgO nanoparticles from 

both precursors is depicted in Figure 4(a) for the real 

component of the dielectric constant, r. The obtained results 

demonstrate that for MgO nanoparticles from both precursors, 

the actual dielectric constant increases with a rise in the photon 

energy. With MgO nanoparticles from MN, the actual 

dielectric constant rises from approximately 2.4 to 6.6 in the 

photon energy range of 1.0 eV to 5.0 eV, while it rises from 

approximately 4.6 to 7.0 in the photon energy range of 1 eV to 

3.0 eV and then maintains a constant value of around 7.0 in the 

region of 3.0 – 6.0 eV.  

In the photon energy range of 1.0 eV to 5.70 eV, the real 

component of the dielectric constant for the MC sample is 

larger than for the MN sample. Since r lowers the speed at 

which electromagnetic waves propagate through a material, 

this indicates a greater absorption due to free carriers effects in 

MgO from MC than in MgO nanoparticles from MN. Figure 

4(b) shows the imaginary part of the dielectric constant i 

versus photon energy. The imaginary dielectric constant, i 

trails accurately similar movement with the extinction 

coefficient (k) as shown in Figure 3(c) for MgO from MN and 

MC precursors. The minimum value of imaginary dielectric 

constant i of MgO from MN is ~1.0 × 10-5 at 1.0 eV while it 

is 1.0 × 10-8 for MgO from MC at energy of 5.58 eV 

4 Conclusion 

MgO nanoparticles have been successfully synthesized by 

citrate sol-gel technique using two Mg precursors. The 

structural and optical results agreed with earlier work in the 

literature on MgO nanoparticles. The precursor type 

contributed significantly to the structural and optical properties 

of the synthesized MgO nanoparticles. The observed results 

suggest that MgO nanoparticles generated from sol-gel 

technique exhibit remarkable properties suggesting a 

promising candidate for materials in several scientific and 

technological applications such as protective layers, 

photocatalysis, sensors, refractory materials, optical coatings, 

energy storage devices, etc. 
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