Influence of Precursor Temperature on the Bandgap Engineering of Zr-doped CrS for Photovoltaic Application

Authors

  • Lucky Imosobomeh Ikhioya Department of Physics and Astronomy, University of Nigeria Nsukka, 410001 Nsukka, Nigeria https://orcid.org/0000-0002-5959-4427
  • Laeticia U. Ugwu Department of Physics Education, Federal College of Education (Technical) Umunze, Anambra State, Nigeria
  • Azubuike J. Ekpunobi Department of Physics and Industrial Physics, Nnamdi Azikiwe University, Awka, Nigeria

DOI:

https://doi.org/10.20221/jnmsr.v3i1.31

Keywords:

Semiconductor, zirconium, CrS, bandgap energy, optical, XRD

Abstract

The physical properties of Zr-doped CrS films were examined in-depth in this study, focusing on the influence of precursor temperature during electrochemical deposition for photovoltaic use. The spectra show a decrease in absorbance from 300 to 600 nm in the visible range and an increase from 650 to 1100 nm in the infrared region. The transparency of chromium sulfide films is enhanced by adding a zirconium dopant at precursor temperatures ranging from 45 to 55℃. The energy bandgap of Zr-doped CrS and CrS varies between 2.35 and 3.33 eV. As the precursor temperature increases, the crystallite size of the CrS and Zr-doped CrS material increases. This shows a better quality and growth of the material's grains. Precursor temperature influences the crystal structure of CrS and Zr-doped CrS films. The studies reveal that variations in the precursor temperature influence the film's crystallinity, phase composition, and grain size.

Author Biography

Lucky Imosobomeh Ikhioya, Department of Physics and Astronomy, University of Nigeria Nsukka, 410001 Nsukka, Nigeria

Complementary Affiliation:
Department of Physics, Federal University, Lokoja, Kogi State, Nigeria

References

N. A. Zarkevich, “Journal of Energy and Power Technology,” J. Energy Power Technol., pp. 1–12, 2020, doi: 10.21926/jept.2303024.

S. G. Sarwar, I. L. Ikhioya, S. Afzal, and I. Ahmad, “Supercapitance performance evaluation of MXene / Graphene / NiO composite electrode via in situ precipitation technique,” Hybrid Adv., vol. 4, no. September, p. 100105, 2023, doi: 10.1016/j.hybadv.2023.100105.

H. Shah, S. Afzal, M. Usman, K. Shahzad, and I. L. Ikhioya, “Impact of Annealing Temperature on Lanthanum Erbium Telluride (La0.1Er0.2Te0.2) Nanoparticles Synthesized via Hydrothermal Approach,” Adv. J. Chem. Sect. A, vol. 6, no. 4, pp. 342–351, 2023, doi: 10.22034/AJCA.2023.407424.1386.

I. Rufus, A. Peter, S. O. Aisida, and I. L. Ikhioya, “Results in Optics Influence of manganese molarity incorporation on manganese silver sulphide semiconductor material for photovoltaic applications,” Results Opt., vol. 12, no. February, p. 100464, 2023, doi: 10.1016/j.rio.2023.100464.

S. Afzal, M. Usman, A. Siddiqui, R. Y. Khosa, and A. Hallén, “Ion Implantation-Induced Bandgap Modifications in the ALD TiO2 Thin Films,” Phys. Status Solidi Appl. Mater. Sci., 2024, doi: 10.1002/pssa.202400205.

S. O. Samuel, Z. J. Timothy, C. K. Ojoba, and L. Ikhioya, “Original Research Article: Temperature’s Impact on the Physical Properties of Rare Earth Element Doped SrS for Optoelectronic Use,” vol. 4, no. 3, pp. 147–156, 2023.

S. K. Ologundudu, A. J. Ekpunobi, and I. L. Ikhioya, “Synthesis and Characterization of ZnS Nanoparticles by Ball Milling Technique,” Int. J. Mater. Sci. Eng., vol. 8, no. 3, pp. 6–13, 2022, doi: 10.14445/23948884/ijmse-v8i3p102.

E. O. Ojegu, O. B. Odia, M. O. Osiele, A. E. Godfrey, and I. L. Ikhioya, “Effect of precursor temperature on electrochemically deposited zirconium doped chromium telluride using a standard three-electrode system,” vol. 14, no. 11, pp. 1148–1159, 2023.

L. A. Nnannaa, U. Jospeh, E. C. Nwaokorongwu, U. A. Ezere, N. I. Akpu, and I. L. Ikhioya, “Impact of annealing temperature on praseodymium cerium telluride nanoparticles synthesise via hydrothermal approach for optoelectronic application,” Mater. Res. Innov., vol. 00, no. 00, pp. 1–11, 2024, doi: 10.1080/14328917.2024.2320982.

B. C. N. Obitte et al., “The effects of doping and temperature on properties of electrochemically deposited Er3+ doped ZnSe thin films,” Opt. Mater. (Amst)., vol. 124, no. December 2021, p. 111979, 2022, doi: 10.1016/j.optmat.2022.111979.

S. Afzal, S. Tehreem, T. Munir, S. G. Sarwar, and I. L. Ikhioya, “Impact of Transition Metal Doped Bismuth Oxide Nanocomposites on the Bandgap Energy for Photoanode Application,” J. Nano & Mat. Sc. Res, vol. 2, no. 1, pp. 104–109, 2023.

E. O. Ojegu, S. O. Samuel, M. O. Osiele, G. E. Akpojotor, and I. L. Ikhioya, “Optimisation of deposition voltage of zirconium-doped chromium telluride via typical three-electrode cell electrochemical deposition technique,” Mater. Res. Innov., vol. 00, no. 00, pp. 1–9, 2023, doi: 10.1080/14328917.2023.2243063.

I. B. Okeoghenea, O. B. Uyoyou, and I. L. Ikhioya, “The influence of gamma irradiation 60Co On CoSe/Ag nanostructures material deposited via electrochemical deposition technique for photovoltaic application,” Asian J. Nanosci. Mater., vol. 5, no. 1, pp. 11–21, 2022, doi: 10.26655/AJNANOMAT.2022.1.2.

D. C. Okeudo et al., “Influence of Polyethylene Glycol ( PEG ) Surfactant on the Properties of Molybdenum-Doped Zinc Oxide Films,” vol. 2, no. 1, pp. 83–89, 2023.

S. O. Samuel, M. L. E. Frank, E. P. Ogherohwo, A. Ekpekpo, J. T. Zhimwang, and I. L. Ikhioya, “Influence of Deposition Voltage on Strontium Sulphide Doped Silver for Optoelectronic Application,” East Eur. J. Phys., vol. 2023, no. 1, pp. 189–196, 2023, doi: 10.26565/2312-4334-2023-1-25.

S. O. Malumi, T. Malumi, M. O. Osiele, and I. L. Ikhioya, “Enhance and Performance Evolution of Silver-Doped Titanium Dioxide Dye-Sensitized Solar Cells Using Different Dyes,” vol. 4, no. 4, pp. 189–200, 2023.

P. Kumar, V. Sharma, A. Kumar, K. Sachdev, and K. Asokan, “ Structural, morphological and vibrational properties of Fe 2 O 3 nanoparticles ,” vol. 2, no. 1, pp. 163–163, 2016, doi: 10.3850/978-981-09-7519-7nbl16-rps-163.

E. N. Josephine, O. S. Ikponmwosa, and I. L. Ikhioya, “Asian Journal of Nanoscience and Original Research Article Enhanced physical properties of SnS / SnO semiconductor material,” vol. 3, pp. 199–212, 2023, doi: 10.26655/AJNANOMAT.2023.3.3.

I. L. Ikhioya, O. Blessing Uyoyou, and O. Oyibo, “Electrochemical Preparation and Characterization of Molybdenum Assimilated Zinc Selenide Materials for Photovoltaic and Solar Cells Application,” J. Mater. Environ. Sci, vol. 2022, no. 5, pp. 515–525, 2022, [Online]. Available: http://www.jmaterenvironsci.com

I. L. Ikhioya, C. O. Ugwuoke, and F. U. Ochai-ejeh, “Optimisation of temperature regulator on spray pyrolysis cobalt selenide doped erbium ( CoSe : Er ) semiconductor material for photovoltaic application,” Mater. Res. Innov., vol. 00, no. 00, pp. 1–8, 2023, doi: 10.1080/14328917.2023.2213493.

I. L. Ikhioya et al., “Electrochemical engineering of ZIF-7 electrode using ion beam technology for better supercapacitor performance,” J. Energy Storage, vol. 90, no. PA, p. 111833, 2024, doi: 10.1016/j.est.2024.111833.

C. Uchechukwu, A. Osita, J. Chukwuemeka, I. Lucky, and O. Odira, “Investigating the influence of natural dye extracts from Ocimum gratissimum , Solanum melongena , Piper guineese , and their blend in the fabrication of perovskite solar cells,” Hybrid Adv., vol. 6, no. April, p. 100198, 2024, doi: 10.1016/j.hybadv.2024.100198.

I. L. Ikhioya and A. C. Nkele, “Green synthesis and characterization of aluminum oxide nanoparticle using neem leaf extract (Azadirachta Indica),” Hybrid Adv., vol. 5, no. November 2023, p. 100141, 2024, doi: 10.1016/j.hybadv.2024.100141.

E. J. Chukwuemeka, N. A. Osita, A. O. Odira, U. C. Uchechukwu, J. D. Mimi, and I. L. Ikhioya, “Performance and Stability Evaluation of Low-Cost Inorganic Methyl Ammonium Lead Iodide (CH3NH3PbI3) Perovskite Solar Cells Enhanced with Natural Dyes from Cashew and Mango Leaves,” Adv. J. Chem. Sect. A, vol. 7, no. 1, pp. 27–40, 2024, doi: 10.48309/ajca.2024.406961.1384.

F. Ali and A. Yahaya, “Original Article: Improved Morphological, Structural, and Optical Features of Er,” vol. 2, no. 1, pp. 308–320, 2023.

N. Akpu et al., “Impact of temperature difference on the features of spray deposited yttrium doped cobalt selenide (YCoSe) thin films for photovoltaic application,” African Sci. Reports, vol. 2, p. 143, 2023, doi: 10.46481/asr.2023.2.3.143.

A. Hussain, F. Ali, and H. Hammad, “Enhanced specific capacitance , structural , optical , and morphological study of carbon ions incorporated into the lattice of ZrCuO 2 nanoparticle synthesized by hydrothermal method,” Hybrid Adv., vol. 5, no. January, p. 100170, 2024, doi: 10.1016/j.hybadv.2024.100170.

A. N. Ifeyinwa, A. O. Maxwell, O. C. Julia, and I. L. Ikhioya, “Growth and optimization of physical properties of cadmium selenide semiconductor material via yttrium doping for photovoltaic / solar energy purposes,” vol. 13, no. 6, pp. 681–691, 2022.

A. U. Agobi, A. J. Ekpunobi, A. I. Ikeuba, I. L. Ikhioya, N. O. Chiaghanam, and K. I. Udofia, “Hybrid polypyrrole/copper/graphene oxide nanocomposite films synthesized via potentiostatic deposition with enhanced photovoltaic properties,” J. Indian Chem. Soc., vol. 99, no. 7, p. 100549, 2022, doi: 10.1016/j.jics.2022.100549.

I. Ahmad, J. Razzaq, A. Ammara, F. Kaleem, and M. Qamar, “Impact of Annealing Temperature on Hydrothermally Synthesized Copper Antimony Oxide ( Cu 2 Sb 2 O ) from Amorphous Phase to Monoclinic Structure,” vol. 7, no. 2, pp. 1–12, 2024.

F. Ali et al., “Improved Morphological, Structural, and Optical Features of ErxCuNiO3 {x= 0, 0.5, 0.7, 0.9},” J. Appl. Organomet. Chem., vol. 3, no. 4, pp. 308–320, 2023, doi: 10.48309/jaoc.2023.421597.1127.

J. M. Rzaij and A. M. Abass, “Review on: TiO2 Thin Film as a Metal Oxide Gas Sensor,” J. Chem. Rev., vol. 2, no. 2, pp. 114–121, 2020, doi: 10.33945/SAMI/JCR.2020.2.4.

R. Ullah, “Review Article: Semiconductor ZnFe2O4 as Efficient Photocatalyst for the Degradation of Organic Dyes: An Update,” J. Chem. Rev., vol. 5, no. 4, pp. 466–476, 2023, doi: 10.48309/jcr.2023.407658.1232.

A. I. Agbrara, E. O. Ojegu, M. O. Osiele, and I. L. Ikhioya, “Electrochemically Synthesize SrSe/ZrSe Heterostructure Material for Photovoltaic Application,” Adv. J. Chem. Sect. A, vol. 6, no. 4, pp. 401–411, 2023, doi: 10.48309/AJCA.2023.407032.1385.

O. Ikechukwu and I. L. Ikhioya, “Asian Journal of Green Chemistry Original Research Article Effect of Sodium Arsenic on the Improvement of TiO 2 / Dye as Photosensitizers in Dye-Sensitized Solar Cells ( DSSC ),” vol. 8, pp. 137–149, 2024, doi: 10.48309/ajgc.2024.419357.1451.

I. L. Ikhioya, A. C. Nkele, and F. U. Ochai-Ejeh, “Green synthesis of copper oxide nanoparticles using neem leaf extract (Azadirachta indica) for energy storage applications,” Mater. Res. Innov., vol. 00, no. 00, pp. 1–7, 2023, doi: 10.1080/14328917.2023.2252677.

I. L. Ikhioya, I. Rufus, and N. I. Akpu, “Influence of temperature on energy band gap and other properties of undoped and cadmium doped manganese sulphide (MnS:Cd) synthesized for photovoltaic and optoelectronic application,” Asian J. Nanosci. Mater., vol. 5, no. 2, pp. 88–97, 2022, doi: 10.26655/AJNANOMAT.2022.2.1.

K. I. Udofia, I. L. Ikhioya, D. N. Okoli, and A. J. Ekpunobi, “Impact of doping on the physical properties of PbSe chalcogenide material for photovoltaic application,” Asian J. Nanosci. Mater., vol. 6, no. 2, pp. 135–147, 2023, doi: 10.26655/AJNANOMAT.2023.2.3.

Z. Muhammad et al., “Zirconium-doped chromium iv oxide nanocomposites: Synthesis, characterization, and photocatalysis towards the degradation of organic dyes,” Catalysts, vol. 11, no. 1, pp. 1–15, 2021, doi: 10.3390/catal11010117.

E. O. Ojegu, S. O. Samuel, M. O. Osiele, G. E. Akpojotor, and I. L. Ikhioya, “Optimisation of deposition voltage of zirconium-doped chromium telluride via typical three-electrode cell electrochemical deposition technique,” Mater. Res. Innov., vol. 28, no. 3, pp. 137–145, 2024, doi: 10.1080/14328917.2023.2243063.

S. O. Samuel, C. K. Ojoba, E. P. Ogherohwo, and I. L. Ikhioya, “Impact of deposition voltage on the physical properties of rare earth element doped strontium sulphide for optoelectronic application,” Niger. J. Technol. Dev., vol. 20, no. 4, pp. 25–32, 2024, doi: 10.4314/njtd.v20i4.1709.

S. M. Shang and W. Zeng, “Conductive nanofibres and nanocoatings for smart textiles,” Multidiscip. Know-How Smart-Textiles Dev., pp. 92–128, 2013, doi: 10.1533/9780857093530.1.92.

X. Song et al., “Soft Chemical Synthesis of HxCrS2: An Antiferromagnetic Material with Alternating Amorphous and Crystalline Layers,” J. Am. Chem. Soc., vol. 141, no. 39, pp. 15634–15640, 2019, doi: 10.1021/jacs.9b07503.

I. L. Ikhioya, S. O. Aisida, I. Ahmad, and F. I. Ezema, “The effect of molybdenum dopant on rare earth metal chalcogenide material,” Chem. Phys. Impact, vol. 7, 2023, doi: 10.1016/j.chphi.2023.100269.

K. Kang, S. Chen, and E. H. Yang, “Synthesis of transition metal dichalcogenides,” Synth. Model. Charact. 2D Mater. their Heterostruct., pp. 247–264, 2020, doi: 10.1016/B978-0-12-818475-2.00012-X.

I. L. Ikhioya, O. B. Uyoyou, and A. L. Oghenerivwe, “The effect of molybdenum-doped tin selenide semiconductor material (SnSe) synthesized via electrochemical deposition technique for photovoltaic application,” J. Mater. Sci. Mater. Electron., vol. 33, no. 13, pp. 10379–10387, 2022, doi: 10.1007/s10854-022-08025-y.

Downloads

Published

2024-12-06

How to Cite

Ikhioya, L. I., Ugwu , L. U., & Ekpunobi , A. J. (2024). Influence of Precursor Temperature on the Bandgap Engineering of Zr-doped CrS for Photovoltaic Application. Journal of Nano and Materials Science Research, 3(1), 7–14. https://doi.org/10.20221/jnmsr.v3i1.31

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.