Influence of Polyethylene Glycol (PEG) Surfactant on the Properties of Molybdenum-Doped Zinc Oxide Films

Authors

  • David C. Okeudo Department of Physics and Astronomy
  • Temam Abdudin Geremu Department of Pure and Industrial Chemistry, University of Nigeria Nsukka, 410001 Nsukka, Nigeria
  • Agnes C. Nkele* Department of Physics and Astronomy
  • B. C. N Obitte Department of Physics and Astronomy
  • I. L. Ikhioya Department of Physics and Astronomy
  • Chinedu P. Chime Department of Agricultural and Bioresources Engineering
  • Ugochi K. Chime Department of Physics and Astronomy
  • Fabian I. Ezema Department of Physics and Astronomy https://orcid.org/0000-0002-4633-1417

Keywords:

ZnO, PEG, molybdenum, band gap, solar cell

Abstract

In this work, the effect of dopant (molybdenum) concentration on the structural, morphological, elemental, and optical properties of surfactant (PEG)-assisted Mo-doped ZnO thin film which were synthesized using hydrothermal method were studied. The XRD and EDS characterizations showed separate and prominent peak stands for Mo which not observed in the control sample (undoped ZnO). The optical properties of the films, such as absorbance, transmittance, reflectance and band gaps energy were determined by UV-Vis spectrophotometer. The samples recorded average absorbance in the visible region, which reduced towards the near-infrared region; with the 0.5 M sample recording the best absorbance property. Higher reflectance values were observed for PEG-assisted Mo-ZnO samples as compared with the undoped ZnO. As the concentration of the dopant (Mo) increase, the band gap energy of the PEG-assisted Mo-doped ZnO thin films decrease. The synthesized samples find potential application in solar cells and photovoltaic devices.

Author Biography

Agnes C. Nkele*, Department of Physics and Astronomy

 

 

References

Hala. S. Hussein, “The state of the art of nanomaterials and its applications in energy saving,” Bulletin of the National Research Centre, vol. 47, no. 1, p. 7, Jan. 2023, doi: 10.1186/s42269-023-00984-4.

A. Barhoum et al., “Review on Natural, Incidental, Bioinspired, and Engineered Nanomaterials: History, Definitions, Classifications, Synthesis, Properties, Market, Toxicities, Risks, and Regulations,” Nanomaterials, vol. 12, no. 2, Art. no. 2, Jan. 2022, doi: 10.3390/nano12020177.

H. Mobeen, M. Safdar, A. Fatima, S. Afzal, H. Zaman, and Z. Mehdi, “Emerging applications of nanotechnology in context to immunology: A comprehensive review,” Frontiers in Bioengineering and Biotechnology, vol. 10, p. 1024871, Nov. 2022, doi: 10.3389/fbioe.2022.1024871.

A. G. Temam et al., “Recent progress on V2O5 based electroactive materials: Synthesis, properties, and supercapacitor application,” Current Opinion in Electrochemistry, vol. 38, p. 101239, Apr. 2023, doi: 10.1016/j.coelec.2023.101239.

R. Lakra, R. Kumar, D. Nath Thatoi, P. Kumar Sahoo, and A. Soam, “Synthesis and characterization of cobalt oxide (Co3O4) nanoparticles,” Materials Today: Proceedings, vol. 41, pp. 269–271, Jan. 2021, doi: 10.1016/j.matpr.2020.09.099.

N. N. M. Zorkipli, N. H. M. Kaus, and A. A. Mohamad, “Synthesis of NiO Nanoparticles through Sol-gel Method,” Procedia Chemistry, vol. 19, pp. 626–631, Jan. 2016, doi: 10.1016/j.proche.2016.03.062.

T. Wirunmongkol, N. O-Charoen, and S. Pavasupree, “Simple Hydrothermal Preparation of Zinc Oxide Powders Using Thai Autoclave Unit,” Energy Procedia, vol. 34, pp. 801–807, Jan. 2013, doi: 10.1016/j.egypro.2013.06.816.

J. T. Chen et al., “The effect of Al doping on the morphology and optical property of ZnO nanostructures prepared by hydrothermal process,” Applied Surface Science, vol. 255, no. 7, pp. 3959–3964, Jan. 2009, doi: 10.1016/j.apsusc.2008.10.086.

J. N. Hasnidawani, H. N. Azlina, H. Norita, N. N. Bonnia, S. Ratim, and E. S. Ali, “Synthesis of ZnO Nanostructures Using Sol-Gel Method,” Procedia Chemistry, vol. 19, pp. 211–216, Jan. 2016, doi: 10.1016/j.proche.2016.03.095.

R. S. Mohar, I. Sugihartono, V. Fauzia, and A. A. Umar, “Dependence of optical properties of Mg-doped ZnO nanorods on Al dopant,” Surfaces and Interfaces, vol. 19, p. 100518, Jun. 2020, doi: 10.1016/j.surfin.2020.100518.

S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Science and Technology of Advanced Materials, vol. 10, no. 1, p. 013001, Jan. 2009, doi: 10.1088/1468-6996/10/1/013001.

A. Faramawy, H. Elsayed, C. Scian, and G. Mattei, “Structural, Optical, Magnetic and Electrical Properties of Sputtered ZnO and ZnO:Fe Thin Films: The Role of Deposition Power,” Ceramics, vol. 5, no. 4, Art. no. 4, Dec. 2022, doi: 10.3390/ceramics5040080.

O. O. Apeh et al., “Properties of nanostructured ZnO thin films synthesized using a modified aqueous chemical growth method,” Mater. Res. Express, vol. 6, no. 5, p. 056406, Feb. 2019, doi: 10.1088/2053-1591/aadcd6.

N. A. Alshehri, A. R. Lewis, C. Pleydell-Pearce, and T. G. G. Maffeis, “Investigation of the growth parameters of hydrothermal ZnO nanowires for scale up applications,” Journal of Saudi Chemical Society, vol. 22, no. 5, pp. 538–545, Jul. 2018, doi: 10.1016/j.jscs.2017.09.004.

V. D. Mote, J. S. Dargad, Y. Purushotham, and B. N. Dole, “Effect of doping on structural, physical, morphological and optical properties of Zn1−xMnxO nano-particles,” Ceramics International, vol. 41, no. 10, Part B, pp. 15153–15161, Dec. 2015, doi: 10.1016/j.ceramint.2015.08.088.

O. Polat et al., “Tailoring the band gap of ferroelectric YMnO3 through tuning the Os doping level,” J Mater Sci: Mater Electron, vol. 30, no. 4, pp. 3443–3451, Feb. 2019, doi: 10.1007/s10854-018-00619-9.

C. Wu, J. Shen, J. Ma, S. Wang, Z. Zhang, and X. Yang, “Electrical and optical properties of molybdenum-doped ZnO transparent conductive thin films prepared by dc reactive magnetron sputtering,” Semicond. Sci. Technol., vol. 24, no. 12, p. 125012, Nov. 2009, doi: 10.1088/0268-1242/24/12/125012.

M. Naouar, I. Ka, M. Gaidi, H. Alawadhi, B. Bessais, and M. A. E. Khakani, “Growth, structural and optoelectronic properties tuning of nitrogen-doped ZnO thin films synthesized by means of reactive pulsed laser deposition,” Materials Research Bulletin, vol. 57, pp. 47–51, Sep. 2014, doi: 10.1016/j.materresbull.2014.05.020.

Tyona, M.D., Osuji, R., Asogwa, P. et al. Structural modification and band gap tailoring of zinc oxide thin films using copper impurities. J Solid State Electrochem 21, 2629–2638 (2017). https://doi.org/10.1007/s10008-017-3533-3

M. R. Dilshad et al., “Fabrication and performance characterization of novel zinc oxide filled cross-linked PVA/PEG 600 blended membranes for CO2/N2 separation,” Journal of Industrial and Engineering Chemistry, vol. 55, pp. 65–73, Nov. 2017, doi: 10.1016/j.jiec.2017.06.029.

M. S. Bakshi, “How Surfactants Control Crystal Growth of Nanomaterials,” Crystal Growth & Design, vol. 16, no. 2, pp. 1104–1133, Feb. 2016, doi: 10.1021/acs.cgd.5b01465.

C. Peetla and V. Labhasetwar, “Effect of Molecular Structure of Cationic Surfactants on Biophysical Interactions of Surfactant-Modified Nanoparticles with a Model Membrane and Cellular Uptake,” Langmuir, vol. 25, no. 4, pp. 2369–2377, Feb. 2009, doi: 10.1021/la803361y.

S. M. Shaban, J. Kang, and D.-H. Kim, “Surfactants: Recent advances and their applications,” Composites Communications, vol. 22, p. 100537, Dec. 2020, doi: 10.1016/j.coco.2020.100537.

D. Ramimoghadam, M. Z. B. Hussein, and Y. H. Taufiq-Yap, “The Effect of Sodium Dodecyl Sulfate (SDS) and Cetyltrimethylammonium Bromide (CTAB) on the Properties of ZnO Synthesized by Hydrothermal Method,” International Journal of Molecular Sciences, vol. 13, no. 10, Art. no. 10, Oct. 2012, doi: 10.3390/ijms131013275.

S. Liufu, H. Xiao, and Y. Li, “Investigation of PEG adsorption on the surface of zinc oxide nanoparticles,” Powder Technology, vol. 145, no. 1, pp. 20–24, Jul. 2004, doi: 10.1016/j.powtec.2004.05.007.

T. Thirugnanam, “Effect of polymers (PEG and PVP) on sol-gel synthesis of microsized zinc oxide,” J. Nanomaterials, vol. 2013, p. 43:43, Jan. 2013, doi: 10.1155/2013/362175.

N. Sened, L. Djahnit, K. El-Miloudi, and M. A. Lopez-Manchado, “Structural and Thermal Properties of Polycaprolactone/PEG-Coated Zinc Oxide Nanocomposites,” Polym. Sci. Ser. A, vol. 63, no. 6, pp. 855–864, Nov. 2021, doi: 10.1134/S0965545X21060110.

Henni, A., Merrouche, A., Telli, L. et al. Optical, structural, and photoelectrochemical properties of nanostructured ln-doped ZnO via electrodepositing method. J Solid State Electrochem 20, 2135–2142 (2016). https://doi.org/10.1007/s10008-016-3190-y

E. Padín-González et al., “Understanding the Role and Impact of Poly (Ethylene Glycol) (PEG) on Nanoparticle Formulation: Implications for COVID-19 Vaccines,” Front Bioeng Biotechnol, vol. 10, p. 882363, 2022, doi: 10.3389/fbioe.2022.882363.

A. C. Nkele et al., “Structural, optical and electrochemical properties of SILAR-deposited zirconium-doped cadmium oxide thin films,” Mater. Res. Express, vol. 6, no. 9, p. 096439, Jul. 2019, doi: 10.1088/2053-1591/ab31f5.

FI Ezema, UOA Nwankwo, Effect of annealing temperature on the structural and optical properties of zinc oxide (ZnO) nanocrystals prepared by sol gel, Digest J Nanomater Biostruct 5 (4), 981-988

Downloads

Published

2023-05-19

How to Cite

Okeudo, D. C., Abdudin Geremu, T., Nkele*, A. C., Obitte, B. C. N., Ikhioya, I. L., Chime, C. P., … Ezema, F. I. (2023). Influence of Polyethylene Glycol (PEG) Surfactant on the Properties of Molybdenum-Doped Zinc Oxide Films . Journal of Nano and Materials Science Research, 2(1). Retrieved from https://journals.nanotechunn.com/jnmsr/article/view/11

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)