Thickness Variation Study of Perovskite Layer Over the Range 100-1300 nm and Its Influence on the Performance of Perovskite Solar Cells Using SCAPS Software


  • Eli Danladi* Department of Physics, Federal University of Health Sciences, Otukpo, Benue State, Nigeria
  • Christopher U. Achem Centre for Satellite Technology Development-NASRDA, Abuja, Nigeria
  • Innocent O. Echi Department of Applied Physics, Kaduna Polytechnic, Kaduna, Nigeria
  • Samuel U. Michael Department of Physics, Nigerian Defence Academy, Kaduna, Nigeria
  • Mary E. Oni Department of Electrical and Electronics Engineering, Nigerian Defence Academy, Kaduna, Nigeria KEYWORDS ABSTRACT Perovskite, Solar



Perovskite, Solar cells, Absorber thickness, Quantum efficiency, SCAPS software


The thickness of the light-absorbing layer plays a critical role in determining the metrics of perovskite solar cells (PSCs). Herein, the simulation of Tin-based perovskite solar cells using one-dimensional Solar Cell Capacitance Simulator (SCAPS-1D) software was reported systematically. The effect of absorber thickness on the performance metrics was investigated. The variation of the thickness of the absorber layer was varied from 100 nm to 1300 nm. The results of the initial device showed performance in Short Circuit Current Density (JSC) of 20.991 mAcm−2, Open Circuit Voltage (VOC) of 0.741 V, Fill Factor (FF) of 54.048 %, and Power Conversion Efficiency (PCE) of 8.256 %. The Quantum Efficiency (QE) of the device shows strong activity within the visible region of the electromagnetic spectrum. Controlling the perovskite layer thickness, results to best PCE of 8.382 %, Jsc of 21.166 mAcm-2, Voc of 0.741 V and FF of 53.439 % at thickness of 0.5 μm. When the optimized result is compared with the initial device, an improvement of ~1.02 times in PCE, ~ 1.01 in Jsc was obtained over the initial device. The results obtained show that, for better PSCs performance, careful selection of the thickness of the absorber layer is important for good photon absorption.


G. Xing, N. Mathews, S. Sun, S. Lim, Y. M. Lam, M. Gratzel, S. M. Sum and T. Chien, “Long-Range Balanced Electron-and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3,” Science, vol. 342, no. 6156, p. 344, 2013.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science, vol. 342, no. 6156, p. 341, 2013.

Q. F. Dong, Y. Fang, Y Shao, P. Mulligan, J. Qiu, L. Cao and J. S. Huang, “Electron-hole diffusion lengths >175 m in solution-grown CH3NH3PbI3 single crystals,” Science, vol. 347, p. 967, 2015.

E. J. W. Crossland, N. Noel, V. Sivaram, T. Leijtens, J. Alexander-Webber and H. J. Snaith, “Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance,” Nature, vol. 495, no. 7440, p. 215, 2013.

M. S. Islam, K. Sobayel, A. Al-Kahtani, M. A. Islam, G. Muhammad, N. Amin, M. D. Shahiduzzaman and M. Akhtaruzzaman, “Defect Study and Modelling of SnX3-Based Perovskite Solar Cells with SCAPS-1D,” Nanomaterials, vol. 11, p. 1218, 2021.

X. Liu, Z. Yang, C. C. Chueh, A. Rajagopal, S. T. Williams, Y. Sun and A. K. Y. Jen, “Improved efficiency and stability of Pb–Sn binary perovskite solar cells by Cs substitution, Journal of Materials Chemistry A, vol. 4, p. 17939, 2016.

E. Mosconi, P. Umari and F. D. Angelis, “Electronic and optical properties of mixed Sn–Pb organohalide perovskites: A first principles investigation,” Journal of Materials Chemistry A, vo. 3, p. 9208, 2015.

J. Im, C. C. Stoumpos, H. Jin, A. J. Freeman and M. G. Kanatzidis, “Antagonism between Spin–Orbit Coupling and Steric Effects Causes Anomalous Band Gap Evolution in the Perovskite Photovoltaic Materials CH3NH3Sn1–xPbxI3,” The Journal of Physical Chemical Letters, vol. 6, p. 3503, 2015.

F. Hao, C. C. Stoumpos, R. P. H. Chang and M. G. Kanatzidis, “Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells,” Journal of the American Chemical Society, vol. 136, p. 8094, 2014.

O. A. Muhammed, E. Danladi, P. H. Boduku, J. Tasiu, M. S. Ahmad and N. Usman, “Modeling and simulation of lead-free perovskite solar cell using SCAPS-1D,” East European Journal Physics, vol. 2021, no. 2, p. 146, 2021.

Y. Sun, Y. Gao, J. Hu, C. Liu, Y. Sui, S. Lv, F. Wang and L. Yang, Comparison of effects of ZnO and TiO2 compact layer on performance of perovskite solar cells,” Journal of Solid State Chemistry, vol. 287, p. 121387, 2020.

T. Ouslimane, L. Et-taya, L. Elmaimouni and A. Benami, “Impact of absorber layer thickness, defect density, and operating temperature on the performance of MAPbI3 solar cells based on ZnO electron transporting material,” Heliyon, vol. 7, p. e06379, 2021.

A. Bag, R. Radhakrishnan, R. Nekovei and R. Jeyakumar, “Effect of absorber layer, hole transport layer thickness, and its doping density on the performance of perovskite soalr cells by device simulation,” Solar Energy, vol. 195, p. 177, 2020.

E. Danladi, A. O. Salawu, M. O. Abdulmalik, E. D. Onoja, E. E. Onwoke and D. S. Adepehin, “Optimization of Absorber and ETM Layer Thickness for Enhanced Tin based Perovskite Solar Cell Performance using SCAPS-1D Software.” Physics Access, vol. 2, no. 1, p. 1, 2022

C. O. Lawani, G. J. Ibeh, O. O. Ige, E. Danladi, J. O. Emmanuel, A. J. Ukwenya and P. O. Oyedare, “Numerical Simulation of Copper Indium Gallium Diselenide Solar Cells Using One Dimensional SCAPs Software,” Journal of the Nigerian Society of Physical Sciences, vol. 3, no. 2, p. 48, 2021.

N. K. Noel, S. D. Stranks, A. Abate, C. Wehrentennig, S. Guarnera, A. A. Haaghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petroza, L. M. Herz and H. J. Snaith, “lead-free organic-inorganic tin halide perovskites for photovoltaic applications,” Energy & Environmental Science, vol. 7, no. 9, p. 3061, 2014

G. A. Sepalage, S. Meyer, A. Pascoe, A. D. Sully, F. Huang, U. Bach, Y. B. Cheng and L. Spiccia, “copper (I) iodide as hole-conductor in planar perovskite solar cells: Probing the Origin of J-V Hysteresis,” Advanced Functional Materials, vol. 25, no. 35, p. 5650, 2015.

E. Danladi, M. Y. Onimisi, S. Garba, R. U. Ugbe, J. A. Owolabi, O. O. Ige, G. J. Ibeh and A. O. Muhammed, “Simulation and optimization of lead-based perovskite solar cells with cuprous oxide as a p-type inorganic layer,” Journal of the Nigerian Society of Physical Sciences, vol. 1, p. 72, 2019.

E. Danladi, D. S. Dogo, S. U. Michael, F. O. Uloko and A. O. Salawu, “Recent advances in modelling of perovskite solar cells using SCAPS-1D: effect of absorber and ETM thickness,” East European Journal of Physics, vol. 2021, no. 4, p. 5, 2021.

U. Mandadapu, S. V. Vedanayakam, and K. Thyagarajan, “Simulation and Analysis of Lead based Perovskite Solar Cell using SCAPS-1D,” Indian Journal of Science and Technology, vol. 10, no. 11, p. 1, 2017.

P. Singh and N. M. Ravindra, “Temperature dependence of solar cell performance-an analysis,” Solar Energy Materials and Solar Cell, vol. 101, p. 36. 2012.




How to Cite

Danladi, E., Achem, C. U., Echi, I. O., Michael, S. U., & Oni, M. E. (2022). Thickness Variation Study of Perovskite Layer Over the Range 100-1300 nm and Its Influence on the Performance of Perovskite Solar Cells Using SCAPS Software. Journal of Nano and Materials Science Research, 1, 22–27.