Development of Chalcogenide Sb2Se3 Thin Film by Simple and Low-Cost Chemical Bath Deposition Technique for Optoelectronics Applications

Authors

  • J. A. Ezihe African center of excellence in future energies and electrochemical systems (ACE-FUELS), Federal University of Technology, P.M.B. 1526, Owerri. Imo State. https://orcid.org/0000-0002-4363-8405
  • M. Abdulwahab Metallurgical and Materials Engineering Department, Air Force Institute of Technology, Nigeria Air Force, PMB 2104, Kaduna
  • F. I. Ezema Department of Physics and Astronomy, University of Nigeria Nsukka, 410001 Nsukka, Nigeria
  • O. K. Echendu Department of Physics, Federal University of Technology, P.M.B. 1526, Owerri, Nigeria

Keywords:

Selenosulphate, reflux, solar cell, photodetector, amorphous

Abstract

Antimony selenide (Sb2Se3) thin films were synthesized for potential application in optoelectronic devices using a low-cost, facile chemical bath deposition (CBD) technique. The as-deposited films exhibit a characteristic brown coloration, indicative of phase formation. The selenium precursor, sodium selenosulfate (Na2SeSO3), was synthesized via a reflux process involving elemental selenium and sodium sulphite (NaSO3), ensuring a controlled release of Se²⁻ ions during deposition. The materials were characterized for structural, optical, morphological and compositional properties.  X-ray diffraction (XRD) measurement revealed amorphous nature of the film’s material for as-synthesized films as well as films annealed at 100 ℃ and 150 ℃ in the absence of selenium environment. The optical property showed that the material has capacity for high absorption in the UV and visible regions of the solar spectrum, as indicated by low transmittance in these regions. The indirect bandgap was estimated to be 1.12 eV for as-deposited material, 1.01 eV for 100 ℃ annealed film and 0.90 eV for 150 ℃ annealed sample. RMS roughness decreases uniformly with increase in annealing temperature, as indicated by Atomic Force Microscopy (AFM) measurement. Scanning Electron Microscopy (SEM) confirmed the uniformity in the surface morphology of the material. Energy dispersive X-ray fluorescence spectroscopy (EDXRF) confirmed the presence of Sb and Se in the material. The high absorption in the visible and UV regions makes the material a good candidate for solar cell absorption layer and photodetectors.

Author Biographies

J. A. Ezihe, African center of excellence in future energies and electrochemical systems (ACE-FUELS), Federal University of Technology, P.M.B. 1526, Owerri. Imo State.

Other affiliation:
bDepartment of Physics, Federal University of Technology, P.M.B. 1526, Owerri, Nigeria

M. Abdulwahab, Metallurgical and Materials Engineering Department, Air Force Institute of Technology, Nigeria Air Force, PMB 2104, Kaduna

aAfrica Centre of Excellence in Future Energies and Electrochemical systems, Federal University of Technology, P.M.B. 1526, Owerri, Nigeria

F. I. Ezema, Department of Physics and Astronomy, University of Nigeria Nsukka, 410001 Nsukka, Nigeria

Other affiliations:
aAfrica Centre of Excellence in Future Energies and Electrochemical systems, Federal University of Technology, P.M.B. 1526, Owerri, Nigeria

O. K. Echendu, Department of Physics, Federal University of Technology, P.M.B. 1526, Owerri, Nigeria

Other affiliation:
aAfrica Centre of Excellence in Future Energies and Electrochemical systems, Federal University of Technology, P.M.B. 1526, Owerri, Nigeria

References

[1] T.M. Razykov, A. Bosio, K.M. Kouchkarov, R.R. Khurramov, M.S. Tivanov, D.S. Bayko, A. Romeo, N. Romeo, Effect of substrate temperature on structure, morphology and opticalproperties of Sb2Se3 thin films fabricated by chemical-molecular beamdeposition method from Sb and Se precursors for solar cells, Thin Solid Films 791 (2024) 140218, https://doi.org/10.1016/j.tsf.2024.140218

[2] S. Porcar, A. Lahlahi, J. G. Cuadra, S. Toca, P. Serna-Gallén, D. Fraga, T. Jawhari, X. Alcobe, L. C. Barrio, P. Vidal-Fuentes, A. Pérez-Rodríguez, J. B. Carda, Electrodeposition of Sb2Se3 solar cells on ceramic tiles, Solar Energy, 290 (2025)113377, https://doi.org/10.1016/j.solener.2025.113377.

[3] A. Amin, K. Zhao, K. Khawaja, Y. Wang, D. V. Pillai, Y. Zheng, L. Li, X. Qian, F. Yan, Rapid Thermal Selenization Enhanced Efficiency in Sb2Se3 Thin Film Solar Cells with Superstrate Configuration, ACS Applied Materials & Interfaces, 17, 9 (2025) 13814-13823, DOI: 10.1021/acsami.4c19606

[4] P. Prajapat, P. Vashishtha, P. Goswami, G. Gupta, Fabrication of Sb2Se3-based high-performance self-powered Visible-NIR broadband photodetector, Materials Science in Semiconductor Processing,169 (2024)107873, https://doi.org/10.1016/j.mssp.2023.107873

[5] Y. Zhou, L. W.S. Song, J. Tang, 2017. 6.5% certified efficiency Sb2Se3 solar cells using PbS colloidal quantum dot film as hole-transporting layer. ACS. Energy Lett., 2 (9) 2125e2132ang

[6] M.A. Bilya, A. Nabok, Y.P. Purandare, A.E. Alam, I.M. Dharmadasa, Growth and Characterization of p-Type and n-Type Sb2Se3 for use in Thin-Film Photovoltaic Solar Cell Devices, energies 17 (2024) 406. https:// doi.org/10.3390/en17020406

[7] S. Porcar, A. Lahlahi, J. G. Cuadra, S. Toca, P. Serna-Gallén, D. Fraga, T. Jawhari, X. Alcobe, L. C. Barrio, P. Vidal-Fuentes, A. Pérez-Rodríguez, J. B. Carda, Electrodeposition of Sb2Se3 solar cells on ceramic tiles, Solar Energy, 290, (2025)113377, https://doi.org/10.1016/j.solener.2025.113377.

[8] R. Jakomin, S. Rampino, G. Spaggiari, M. Casappa, G. Trevisi, E. Del Canale, E. Gombia, M. Bronzoni, K.K. Sossoe, F. Mezzadri, et al. Cu-Doped Sb2Se3 Thin-Film Solar Cells Based on Hybrid Pulsed Electron Deposition/Radio Frequency Magnetron Sputtering Growth Techniques, Solar 4 (2024) 83-98. https://doi.org/10.3390/solar4010004

[9] Z. Duan, X. Liang, Y. Feng, H. Ma, B. Liang, Y. Wang, S. Luo, S. Wang, R.E.I. Schropp, Y. Mai, Z. Li, 2022. Sb2Se3 Thin Film Solar Cells Exceeding 10% Power Conversion Efficiency Enabled by Injection Vapor Deposition (IVD) Technology, Advanced Materials, 34. 10.1002/adma.202202969.

[10] Y. Zhao, S. Wang, C. Li, B. Che, X. Chen, H. Chen, R. Tang, X. Wang, G. Chen, T. Wang, et al., Regulating Deposition Kinetics via a Novel Additive-Assisted Chemical Bath Deposition Technology Enables Fabrication of 10.57%-Efficiency Sb2Se3 Solar Cells. Energy Environ. Sci., 15 (2022) 5118–5128. https://doi.org/10.3390/en16196862.

[11] X. Xiong, C. Ding, B. Jiang, G. Zeng, B. Li, An Optimization Path for Sb2(S,Se)3 Solar Cells to Achieve an Efficiency Exceeding 20%, Nanomaterials , 14, (2024)1433. https://doi.org/10.3390/nano14171433

[12] S. Rühle, Tabulated values of the Shockley-Queisser limit for single junction solar cells, Solar Energy 130 (2016) 139–147, https://doi.org/10.1016/j. solener.2016.02.015.

[13] G. Dai, X. Wang, S. Chen, X. Chen, B. Che, T. Chen, P. Hu, J. Li, Selenium‐Rich Sb2 (S, Se) 3 Thin Films Deposited via Sequential Chemical Bath Deposition for High‐Efficiency Solar Cells, Advanced Functional Materials, (2025) 2415215.

[14] P. K. Nair, M. T. S. Nair, V. M. García, O. L. Arenas, Y. Pena, A. Castillo, I. T. Ayala, O. Gomezdaza, A. Sánchez, J. Campos, H. Hu, R. Suárez and M. E. Rincón, Semiconductor Thin Films by Chemical Bath Deposition for Solar Energy Related Applications, Sol. Energy Mater. Sol. Cells, 52.3-4 (1998) 313-344. doi:10.1016/S0927-0248(97)00237-7

[15] S. Campbell, L. J. Phillips, J. D. Major, O. S. Hutter, R. Voyce, Y. Qu, N. S. Beattie, G. Zoppi, V. Barrioz, Routes to increase performance for antimony selenide solar cells using inorganic hole transport layers, Frontiers in chemistry, (2022) DOI 10.3389/fchem.2022.954588

[16] H. Lei, J. Chen, Z. Tan and G. Fang, Review of Recent Progress in Antimony Chalcogenide-Based Solar Cells: Materials and Devices, Sol. RRL, 3 (2019)1900026, https://doi.org/10.1002/solr.201900026

[17] O. S. Hutter, L. J. Phillips, K. Durose and J. D. Major,6.6% efficient antimony selenide solar cells using grain structure control and an organic contact layer, Sol. Energy Mater. Sol. Cells, 188 (2018) 177–181, https://doi.org/10.1016/j.solmat.2018.09.004

[18] N. Fleck, T.D.C. Hobson, C.N. Savory, J. Buckeridge, T.D. Veal, M.R. Correia, D.O. Scanlon, K. Durose, F. Jäckel, Identifying Raman modes of Sb2Se3and their symmetries using angle-resolved polarised Raman spectra J. Mater. Chem. A 8 (2020) 8337–44

[19] R. Chen, Y. Mao, Z. Li, F. Liu, F. Gao, Phenolic resin-derived carbon-confined strategy: Sb2Se3@C@CNTs-600 with ultra-high pseudocapacitive contribution as a superior lithium-ion battery anode, Materials Chemistry and Physics, 293 (2023) 126891, https://doi.org/10.1016/j.matchemphys.2022.126891.

[20] S. J. U. Islam, M. A. Bhat, A. Hassan, A. H. Wani, M. A. Dar, K. Majid, M. Wahid, Unlocking the Electrocatalytic Potential of Sb2Se3 for HER via Cu Doping-Induced Phase Conversion and rGO Integration, Energy & Fuels, 39 (14) (2025) 6957-6967, DOI: 10.1021/acs.energyfuels.4c06119

[21] Y. Nakane, N. Sato, H. Makinon, S. Miyaoka, Principle of laser recording mechanism by forming an alloy in the multilayer of thin metallic films, in: Proceedings of the SPIE 0529, Optical Mass Data Storage I, (1985) 76.

[22] H. Zheng, L. Tan, X.-Y. Mu, Y.-T. Dun, A.-M. Mo, X.-H. Wang, M.-M. Yang, C.-L. Wu, W. Dang, R.-D. Cong, B.-L. Liang, Y. Wang, Z.-Q. Li, X.-L. Li, Exciton properties of Sb2Se3 grown in different arrays, Journal of Alloys and Compounds, 1010 (2025) 178277. https://doi.org/10.1016/j.jallcom.2024.178277.

[23] A. Hajjiah, Analytical model for photocurrent density in linearly graded band gap Sb2Se3 solar cells, Solar Energy Materials and Solar Cells, 282 (2025) 113404. https://doi.org/10.1016/j.solmat.2025.113404.

[24] A. Kuruvilla, I. M. Francis, M. Lakshmi, Effect of selenisation on the properties of antimony selenide thin films. IOP Conf. Ser.: Mater. Sci. Eng. 872 (2020) 012151. doi:10.1088/1757-899X/872/1/012151

[25] E.A. El-Sayad, A.M. Moustafa, S.Y. Marzack, Effect of heat treatment on the structural and optical properties of amorphous Sb2Se3 and Sb2Se2S thin films. Physica B 404 (2009) 1119.

[26] Z.G. Ivanova, E. Cemoskova, V.S. Vassilev, S.V. Boychera, Thermomechanical and structural characterization of GeSe2-Sb2Se3-ZnSe glasses. Mater. Lett. 57 (2003) 1025. DOI:10.101.6/S0167-577X(02)00710-3

[27] M. Malligavathy, R.T. Ananth Kumar, Chandasree Das, S. Asokan , D. Pathinettam Padiyan, Growth and characteristics of amorphous Sb2Se3 thin films of various thicknesses for memory switching applications, Journal of Non-Crystalline Solids 429 (2015) 93–97, http://dx.doi.org/10.1016/j.jnoncrysol.2015.08.038

[28] O. K. Echendu1, S. Z. Werta1, F. B. Dejene1, A. A. Ojo, I. M. Dharmadasa, Ga doping of nanocrystalline CdS thin films by electrodeposition method for solar cell application: the influence of dopant precursor concentration, Journal of Materials Science: Materials in Electronics (2019) https://doi.org/10.1007/s10854-019-00794-3

[29] O.K. Echendu, S.Z. Werta, F.B. Dejene, Effect of Cadmium precursor on the Physico-chemical properties of electrochemically grown CdS thin films for optoelectroniccs devices application: a comparative study. Journal of Materials Science: Materials in Electronics (2019) 30:365–377. https://doi.org/10.1007/s10854-018-0301-9

[30] O.K. Echendu, S.Z. Werta, F.B. Dejene, V. Craciun, Electrochemical deposition and characterization of ZnOS thin films for photovoltaic and photocatalysis applications, Journal of Alloys and Compounds 769 (2018) 201e209. https://doi.org/10.1016/j.jallcom.2018.07.327 0

[31] B. Che, Z. Cai, H. Xu, S. Sheng, Q. Zhao, P. Xiao, J. Yang, C. Zhu, X. Zheng, R. Tang, T. Chen, 2025. Post-deposition Treatment of Sb2Se3 Enables Defect Passivation and Increased Carrier Transport Dimension for Efficient Solar Cell Application, Angewandte Chemi, 137, 16, e202425639, https://doi.org/10.1002/ange.202425639

[32] L. Shen, D. Qin, X. Hu, S. Chen, J. Tao, Utilizing methanol as a solvent auxiliary additive for the fabrication of high-efficiency Sb2Se3 solar cells. Journal of Alloys and Compounds, (2025) 1010:177967.

[33] S. Ghosh, M. V. B. Moreira, J. C. Gonzalez, Growth and optical properties of nanocrystalline Sb2Se3 thin-films for the application in solar-cells, Solar Energy, 211 (2020) 613–621, https://doi.org/doi.org/10.1016/j.solener.2020.10.001

[34] A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X. Zu, S. Li, L. Qiao, A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells, Sol. Energy, 201 (2020) 227–246.

[35] H. He, Y. Zhong, W. Zou, X. Zhang, J. Zhao, M. Ishaq, G. Liang, A novel Se-diffused selenization strategy to suppress bulk and interfacial defects in Sb2Se3 thin film solar cell. Surfaces and Interfaces, 1, 51 (2024) 104793

[36] K. Yang, B. Li, G. Zeng, Structural, morphological, compositional, optical and electrical properties of Sb2Se3 thin films deposited by pulsed laser deposition, Superlattices and Microstructures (2020), doi: https://doi.org/10.1016/j.spmi.2020.106618

[37] J.A. Ezihe, M. Abdulwahab, F.I. Ezema, O.K. Echendu, Essential properties, growth methods, environmental impacts, and solar cell application of antimony triselenide thin films: A review, Hybrid Advances, 10 (2025) 100505, https://doi.org/10.1016/j.hybadv.2025.100505.

Downloads

Published

2025-06-16