Influence of Annealing Temperature on the Optical, Structural, Morphological and Compositional Properties of SILAR Deposited Copper Manganese Oxide Thin Films

Authors

  • N. L. Okoli* Department of Physics, Legacy University Okija, Anambra State, Nigeria
  • C. J. Nkamuo Department of Science Laboratory and Technology, Federal Polytechnic Oko, Anambra State, Nigeria
  • C. I. Elekalachi Department of Industrial Physics, Chukwuemeka Odumegwu Ojukwu University, Uli, Anambra State, Nigeria
  • I. O. Obimma Department of Science Laboratory and Technology, Federal Polytechnic Oko, Anambra State, Nigeria

Keywords:

CuMnO2, Annealing temperature, SILAR cycles, Optical analysis, Crystallite sizes

Abstract

In this work, effects of annealing temperature on the optical, structural, morphological, and compositional properties of SILAR deposited copper manganese oxide thin films were determined. Mixture of copper (II) chloride and manganese (II) chloride complexed ammonium hydroxide solution was used as precursor for cations. Sodium hydroxide placed in a hot plate at 60℃ served as precursor for anions. Five samples of copper manganese oxide (CuMnO2) thin films were concurrently synthesized using 10 SILAR cycles to obtain desired thickness. After deposition, four of the deposited CuMnO2 thin films were annealed at 473 K, 573 K, 673 K and 773 K respectively while one as-grown sample was used as a control. Thickness of deposited thin film estimated using gravimetric method increased as annealing temperature increases. Optical, structural, morphological, and elemental composition analysis were carried out on the samples. Optical results showed that annealing temperature has a significant effect on the optical properties. Structural analysis showed an improvement in the crystallinity of the films. Crystallite size of the deposited thin film obtained ranged between 14.36 nm – 33.14 nm. It was found that increase in annealing temperature resulted to increase in the crystallite sizes. SEM micrographs showed an increase in thin film particles and surface roughness as a result of increase in annealing temperature. Relative amounts of Cu, Mn and O2 were found in the EDS results obtained.

Author Biography

N. L. Okoli*, Department of Physics, Legacy University Okija, Anambra State, Nigeria

*Corresponding Author

Auxiliary affiliation:
Department of Industrial Physics, Chukwuemeka Odumegwu Ojukwu University, Uli, Anambra State, Nigeria

References

Abdulvagidov, S.B., Djabrailov, S.Z. and Abdulvagidov, B. S. (2019). Nature of novel criticality in ternary transition-metal oxides. Sci Rep 9, 19328. DOI: https://doi.org/10.1038/s41598-019-55594-w

Toh, R.J., Eng, A.Y.S., Sofer, Z., Sedmidubsky, D. and Pumera, M. (2015). Ternary Transition Metal Oxide Nanoparticles with Spinel Structure for the Oxygen Reduction Reaction. CHEMELECTROCHEM, 2: 982-987. DOI: https://doi.org/10.1002/celc.201500070

Falahatgar, S. S., Ghodsi, F. E., Tepehan, F. Z., Tepehan, G.G., Turhan, ̇I. (2014). Electrochromic performance, wettability and optical study of Copper Manganese oxide thin films: Effect of annealing temperature . Applied Surface Science, 289, 289– 299

DOI: https://doi.org/10.1016/j.apsusc.2013.10.153

Zahan, M. and Podder, J. (2020). Structural, optical and electrical properties of Cu:MnO2 nanostructured thin films for glucose sensitivity measurements. SN Applied Science, 2, 385, DOI: https://doi.org/10.1007/s42452-020-2191-8

Ma, P., Geng, Q., Gao, X., Yang, S. and Li, G. (2016). Aqueous chemical solution deposition of spinel Cu1.5Mn1.5O4 single layer films for solar selective absorber. RSC Advances, 6, 54820-54829. DOI: https://doi.org/10.1039/C6RA08777A

Pal, S., Diso, D., Franza, S., Licciulli, A. and Rizzo, L. (2013). Spectrally selective absorber coating from transition metal complex for efficient photothermal conversion. Journal of Materials Science, 48(23), 8268 – 8276. DOI: https://doi.org/10.1007/s10853-013-7639-4

Yang, X. and Zhang, Z. (2021). Study on the Performance of Copper-Manganese Composite Oxide Catalysts for Toluene. ChemistrySelect, 6(19), 4837 – 4843. DOI: https://doi.org/10.1002/slct.202100945

Wang, Y., Yang, D., Li, S., Zhang, L., Zheng, G. Guo, L. (2019). Layered Copper Manganese oxide for the efficient catalytic CO and VOCs oxidation. Chemical Engineering Journal, 357, 258-268. DOI: https://doi.org/10.1016/j.cej.2018.09.156

Chen, S., Tang, W., He, J., Miao, R., Lin, H., Song, W., Wang, S., Gao, P. and Suib, S. L. (2018) Copper Manganese oxide enhanced nanoarray-based monolithic catalysts for hydrocarbon oxidation. Journal of Materials Chemistry A, 6(39), 19047 – 19057. DOI: https://doi.org/10.1039/C8TA06459H

Clarke, T. J., Davies, T. E., Kondrat, S. A. and Taylor, S. H. (2015). Mechanochemical synthesis of Copper Manganese oxide for the ambient temperature oxidation of carbon monoxide. Applied Catalysis B: Environmental, 165, 222-231. DOI: https://doi.org/10.1016/j.apcatb.2014.09.070

Einaga, H., Kiya, A., Yoshioka, S. and Teraoka, Y. (2014). Catalytic properties of Copper Manganese mixed oxides prepared by coprecipitation using tetraammonium hydroxide. Catalysis Science Technology, 4(10), 3713-3722. DOI: https://doi.org/10.1039/C4CY00660G

Gülen, Y., Bayansal, F., Şahin, B., Çetinkara, H. A., & Güder, H. S. (2013). Fabrication and characterization of Mn-doped CuO thin films by the SILAR method. Ceramics International, 39(6), 6475–6480. DOI: https://doi.org/10.1016/j.ceramint.2013.01.077

Rahaman, R., Sharmin, M. and Podder, J. (2022). Band gap tuning and p to n-type transition in Mn-doped CuO nanostructured thin films. Journal of Semiconductors, 43(1), 1-11. DOI: https://doi.org/10.1088/1674-4926/43/1/012801

Ezenwaka, L. N.; Umeokwonna, N.S.; Okoli, N.L. (2020). Optical, structural, morphological, and compositional properties of cobalt doped tin oxide (CTO) thin films deposited by modified chemical bath method in alkaline medium, Ceramics International, 46(5), 6318-6325, DOI: https://doi.org/10.1016/j.ceramint.2019.11.106.

Nwanya, A. C., Obi, D., Osuji, R. U., Bucher, R., Maaza, M. and Ezema, F. I. (2017). Simple chemical route for nanorod-like cobalt oxide films for electrochemical energy storage applications. Journal of Solid State Electrochemistry, Volume 21(9), 2567 – 2576. DOI: https://doi.org/10.1007/s10008-017-3520-8

Ezenwaka, L. N., Okoli, N. L., Okereke, N. A., Ezenwa, I. A. and Nwori, N. A. (2021). Properties of Electrosynthesized Cobalt Doped Zinc Selenide Thin Films Deposited at Varying Time. Nanoarchitectonics, 3(1), 1 – 9. DOI: https://doi.org/10.37256/nat.3120221040

Augustin, M., Fenske, D., Bardenhagen, I., Westphal, A., Knipper, M., Plaggenborg, T., Kolny-Olesiak, J. and Parisi, J. (2015). Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence. Beilstein Journal of Nanotechnology, 6, 47–59. DOI: https://doi.org/10.3762/bjnano.6.6

Marin Figueredo, M. J., Andana, T., Bensaid, S., Dosa, M., Fino, D., Russo, N., & Piumetti, M. (2020). Cerium–Copper–Manganese Oxides Synthesized via Solution Combustion Synthesis (SCS) for Total Oxidation of VOCs. Catalysis Letters, 150, 1821–1840. DOI: https://doi.org/10.1007/s10562-019-03094-x

Pal, R. and Basu, S. (2017). Low temperature synthesis of Copper Manganese oxide – polyaniline composite: Electrochemical characterizations for oxygen reduction reaction in acid media. Ferroelectrics, 519(1), 90–99. DOI: https://doi.org/10.1080/00150193.2017.1361220

Fan, F., Wang, L., Wang, L., Liu, J., & Wang, M. (2022). Low-Temperature Selective NO Reduction by CO over Copper-Manganese Oxide Spinels. Catalysts, 12(6), 1-12. DOI: https://doi.org/10.3390/catal12060591

Obodo, R. M., Mbam, S. M., Nsude, H. E. Ramzan, M., Ezike, S. C., Ahmad, I., Maaza, M. and Ezema, F. I. (2022). Graphene oxide enhanced Co3O4/NiO composite electrodes for supercapacitive devices applications. Applied Surface Science Advances 9(100254), 1-9. DOI: https://doi.org/10.1016/j.apsadv.2022.100254

Egwunyenga, N. J., Onuabuchi, V. C., Okoli, N. L. and Nwankwo, I. E. (2021). Effect of SILAR cycles on the thickness, structural, optical properties of cobalt selenide thin film. International Research Journal of Multidisciplinary Technovation, 10, 1-9. DOI: https://doi.org/10.34256/irjmt2141

Nsude, H. E., Obodo, R. M., Obodo, K. U., Ikhioya, L. I., Asogwa, P. U., Osuji, R. U., Maaza, M. and Ezema, F. I. (2022). Binder-free fabricated CuFeS2 electrodes for supercapacitor applications. Material Research Express, 9(025501), 1-9. DOI: https://doi.org/10.1088/2053-1591/ac4f13

Awada, C., Whyte, G. M., Offor, P. O., Whyte, F. U., Kanoun, M. B., Goumri-Said, S., Alshoaibi, A., Ekwealor, A. B. C., Maaza, M. and Ezema, F. I. (2020). Synthesis and Studies of Electro-Deposited Yttrium Arsenic Selenide Nanofilms for Opto-Electronic Applications. Nanomaterials, 10(8), 1-15. DOI: https://doi.org/10.3390/nano10081557

Ezenwaka, L. N., Nwori, N. A., Ottih, I. E., Okereke, N. A. and Okoli, N. L. (2022). Investigation of the Optical, Structural and Compositional Properties of Electrodeposited Lead Manganese Sulfide (PbMnS) Thin Films for Possible Device Applications. Nanoarchitectonics, 3(1):18-32. DOI: https://doi.org/10.37256/nat.3120221226

Downloads

Published

2022-09-06

How to Cite

Okoli, N. L., Nkamuo, C. J., Elekalachi, C. I., & Obimma, I. O. (2022). Influence of Annealing Temperature on the Optical, Structural, Morphological and Compositional Properties of SILAR Deposited Copper Manganese Oxide Thin Films. Journal of Nano and Materials Science Research, 1, 68–75. Retrieved from https://journals.nanotechunn.com/jnmsr/article/view/8

Issue

Section

Articles

Categories

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.