Influence of Annealing Temperature on the Optical, Structural, Morphological and Compositional Properties of SILAR Deposited Copper Manganese Oxide Thin Films
Keywords:
CuMnO2, Annealing temperature, SILAR cycles, Optical analysis, Crystallite sizesAbstract
In this work, effects of annealing temperature on the optical, structural, morphological, and compositional properties of SILAR deposited copper manganese oxide thin films were determined. Mixture of copper (II) chloride and manganese (II) chloride complexed ammonium hydroxide solution was used as precursor for cations. Sodium hydroxide placed in a hot plate at 60℃ served as precursor for anions. Five samples of copper manganese oxide (CuMnO2) thin films were concurrently synthesized using 10 SILAR cycles to obtain desired thickness. After deposition, four of the deposited CuMnO2 thin films were annealed at 473 K, 573 K, 673 K and 773 K respectively while one as-grown sample was used as a control. Thickness of deposited thin film estimated using gravimetric method increased as annealing temperature increases. Optical, structural, morphological, and elemental composition analysis were carried out on the samples. Optical results showed that annealing temperature has a significant effect on the optical properties. Structural analysis showed an improvement in the crystallinity of the films. Crystallite size of the deposited thin film obtained ranged between 14.36 nm – 33.14 nm. It was found that increase in annealing temperature resulted to increase in the crystallite sizes. SEM micrographs showed an increase in thin film particles and surface roughness as a result of increase in annealing temperature. Relative amounts of Cu, Mn and O2 were found in the EDS results obtained.
References
Abdulvagidov, S.B., Djabrailov, S.Z. and Abdulvagidov, B. S. (2019). Nature of novel criticality in ternary transition-metal oxides. Sci Rep 9, 19328. DOI: https://doi.org/10.1038/s41598-019-55594-w
Toh, R.J., Eng, A.Y.S., Sofer, Z., Sedmidubsky, D. and Pumera, M. (2015). Ternary Transition Metal Oxide Nanoparticles with Spinel Structure for the Oxygen Reduction Reaction. CHEMELECTROCHEM, 2: 982-987. DOI: https://doi.org/10.1002/celc.201500070
Falahatgar, S. S., Ghodsi, F. E., Tepehan, F. Z., Tepehan, G.G., Turhan, ̇I. (2014). Electrochromic performance, wettability and optical study of Copper Manganese oxide thin films: Effect of annealing temperature . Applied Surface Science, 289, 289– 299
DOI: https://doi.org/10.1016/j.apsusc.2013.10.153
Zahan, M. and Podder, J. (2020). Structural, optical and electrical properties of Cu:MnO2 nanostructured thin films for glucose sensitivity measurements. SN Applied Science, 2, 385, DOI: https://doi.org/10.1007/s42452-020-2191-8
Ma, P., Geng, Q., Gao, X., Yang, S. and Li, G. (2016). Aqueous chemical solution deposition of spinel Cu1.5Mn1.5O4 single layer films for solar selective absorber. RSC Advances, 6, 54820-54829. DOI: https://doi.org/10.1039/C6RA08777A
Pal, S., Diso, D., Franza, S., Licciulli, A. and Rizzo, L. (2013). Spectrally selective absorber coating from transition metal complex for efficient photothermal conversion. Journal of Materials Science, 48(23), 8268 – 8276. DOI: https://doi.org/10.1007/s10853-013-7639-4
Yang, X. and Zhang, Z. (2021). Study on the Performance of Copper-Manganese Composite Oxide Catalysts for Toluene. ChemistrySelect, 6(19), 4837 – 4843. DOI: https://doi.org/10.1002/slct.202100945
Wang, Y., Yang, D., Li, S., Zhang, L., Zheng, G. Guo, L. (2019). Layered Copper Manganese oxide for the efficient catalytic CO and VOCs oxidation. Chemical Engineering Journal, 357, 258-268. DOI: https://doi.org/10.1016/j.cej.2018.09.156
Chen, S., Tang, W., He, J., Miao, R., Lin, H., Song, W., Wang, S., Gao, P. and Suib, S. L. (2018) Copper Manganese oxide enhanced nanoarray-based monolithic catalysts for hydrocarbon oxidation. Journal of Materials Chemistry A, 6(39), 19047 – 19057. DOI: https://doi.org/10.1039/C8TA06459H
Clarke, T. J., Davies, T. E., Kondrat, S. A. and Taylor, S. H. (2015). Mechanochemical synthesis of Copper Manganese oxide for the ambient temperature oxidation of carbon monoxide. Applied Catalysis B: Environmental, 165, 222-231. DOI: https://doi.org/10.1016/j.apcatb.2014.09.070
Einaga, H., Kiya, A., Yoshioka, S. and Teraoka, Y. (2014). Catalytic properties of Copper Manganese mixed oxides prepared by coprecipitation using tetraammonium hydroxide. Catalysis Science Technology, 4(10), 3713-3722. DOI: https://doi.org/10.1039/C4CY00660G
Gülen, Y., Bayansal, F., Şahin, B., Çetinkara, H. A., & Güder, H. S. (2013). Fabrication and characterization of Mn-doped CuO thin films by the SILAR method. Ceramics International, 39(6), 6475–6480. DOI: https://doi.org/10.1016/j.ceramint.2013.01.077
Rahaman, R., Sharmin, M. and Podder, J. (2022). Band gap tuning and p to n-type transition in Mn-doped CuO nanostructured thin films. Journal of Semiconductors, 43(1), 1-11. DOI: https://doi.org/10.1088/1674-4926/43/1/012801
Ezenwaka, L. N.; Umeokwonna, N.S.; Okoli, N.L. (2020). Optical, structural, morphological, and compositional properties of cobalt doped tin oxide (CTO) thin films deposited by modified chemical bath method in alkaline medium, Ceramics International, 46(5), 6318-6325, DOI: https://doi.org/10.1016/j.ceramint.2019.11.106.
Nwanya, A. C., Obi, D., Osuji, R. U., Bucher, R., Maaza, M. and Ezema, F. I. (2017). Simple chemical route for nanorod-like cobalt oxide films for electrochemical energy storage applications. Journal of Solid State Electrochemistry, Volume 21(9), 2567 – 2576. DOI: https://doi.org/10.1007/s10008-017-3520-8
Ezenwaka, L. N., Okoli, N. L., Okereke, N. A., Ezenwa, I. A. and Nwori, N. A. (2021). Properties of Electrosynthesized Cobalt Doped Zinc Selenide Thin Films Deposited at Varying Time. Nanoarchitectonics, 3(1), 1 – 9. DOI: https://doi.org/10.37256/nat.3120221040
Augustin, M., Fenske, D., Bardenhagen, I., Westphal, A., Knipper, M., Plaggenborg, T., Kolny-Olesiak, J. and Parisi, J. (2015). Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence. Beilstein Journal of Nanotechnology, 6, 47–59. DOI: https://doi.org/10.3762/bjnano.6.6
Marin Figueredo, M. J., Andana, T., Bensaid, S., Dosa, M., Fino, D., Russo, N., & Piumetti, M. (2020). Cerium–Copper–Manganese Oxides Synthesized via Solution Combustion Synthesis (SCS) for Total Oxidation of VOCs. Catalysis Letters, 150, 1821–1840. DOI: https://doi.org/10.1007/s10562-019-03094-x
Pal, R. and Basu, S. (2017). Low temperature synthesis of Copper Manganese oxide – polyaniline composite: Electrochemical characterizations for oxygen reduction reaction in acid media. Ferroelectrics, 519(1), 90–99. DOI: https://doi.org/10.1080/00150193.2017.1361220
Fan, F., Wang, L., Wang, L., Liu, J., & Wang, M. (2022). Low-Temperature Selective NO Reduction by CO over Copper-Manganese Oxide Spinels. Catalysts, 12(6), 1-12. DOI: https://doi.org/10.3390/catal12060591
Obodo, R. M., Mbam, S. M., Nsude, H. E. Ramzan, M., Ezike, S. C., Ahmad, I., Maaza, M. and Ezema, F. I. (2022). Graphene oxide enhanced Co3O4/NiO composite electrodes for supercapacitive devices applications. Applied Surface Science Advances 9(100254), 1-9. DOI: https://doi.org/10.1016/j.apsadv.2022.100254
Egwunyenga, N. J., Onuabuchi, V. C., Okoli, N. L. and Nwankwo, I. E. (2021). Effect of SILAR cycles on the thickness, structural, optical properties of cobalt selenide thin film. International Research Journal of Multidisciplinary Technovation, 10, 1-9. DOI: https://doi.org/10.34256/irjmt2141
Nsude, H. E., Obodo, R. M., Obodo, K. U., Ikhioya, L. I., Asogwa, P. U., Osuji, R. U., Maaza, M. and Ezema, F. I. (2022). Binder-free fabricated CuFeS2 electrodes for supercapacitor applications. Material Research Express, 9(025501), 1-9. DOI: https://doi.org/10.1088/2053-1591/ac4f13
Awada, C., Whyte, G. M., Offor, P. O., Whyte, F. U., Kanoun, M. B., Goumri-Said, S., Alshoaibi, A., Ekwealor, A. B. C., Maaza, M. and Ezema, F. I. (2020). Synthesis and Studies of Electro-Deposited Yttrium Arsenic Selenide Nanofilms for Opto-Electronic Applications. Nanomaterials, 10(8), 1-15. DOI: https://doi.org/10.3390/nano10081557
Ezenwaka, L. N., Nwori, N. A., Ottih, I. E., Okereke, N. A. and Okoli, N. L. (2022). Investigation of the Optical, Structural and Compositional Properties of Electrodeposited Lead Manganese Sulfide (PbMnS) Thin Films for Possible Device Applications. Nanoarchitectonics, 3(1):18-32. DOI: https://doi.org/10.37256/nat.3120221226
Downloads
Published
How to Cite
License
Copyright (c) 2022 Journal of Nano and Materials Science Research
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. You are free to share, copy, and redistribute the material in any medium or format for non-commercial purposes, provided appropriate credit is given to the author(s). Modifications, adaptations, or commercial use are not permitted under this license.