Tailoring Properties of Fe-based Biodegradable Stent Materials by Grain Refinement: A Review
DOI:
https://doi.org/10.20221/jnmsr.v2i1.13Keywords:
grain refinement, degradation rate, biodegradable metal, pure ironAbstract
Overtime, researchers on biodegradable stent materials are challenged to develop a material having adequate mechanical properties and degradation rate matching tissue healing rate. This study attempted to show that biodegradation rate of pure iron (Fe)-stent material in physiological fluid depends on effective grain size just like its mechanical properties by reviewing some pertinent works on pure Fe-based biometals. This study reviewed the works of some researchers who used different processing methods that altered the microstructure and extracted information on the dependence of degradation rates and mechanical properties of pure iron on average grain sizes. The major outcome of this survey is that finer grain size led to lower degradation rate of pure iron in near-neutral simulated body fluid, while strength increased with decrease in grain size. Strength and ductility are mutually exclusive as extreme grain refinement of Fe-based metal improves strength at the expense of ductility, but enhances corrosion resistance and biocompatibility. On the other hand, extreme grain refinement followed by annealing heat treatment increases grain size, lowers strength and restores ductility. This survey indicates strongly that grain refinement is a promising route of striking a balance among the required properties of iron-based stent material.
References
R. J. Werkhoven , W. H. Sillekens, J. B. J. M. van Lieshout, in Magnesium Technology 2011 , (Eds: W. H. Sillekens, S. R. Agnew, N. R. Neelameggham, S. N. Mathaudhu), The Minerals, Metals, and Materials Society, Warrendale, PA, USA 2011 , p. 419.
Agung Purnama, Hendra Hermawan, Diego Mantovani. “Biodegradable Metal Stents: A Focused Review on Materials and Clinical Studies”, Journal of Biomaterials and Tissue Engineering, Vol. 4, 2014, pp 1–6.
F. Witte, N. Hort , F. Feyerabend , C. Vogt, in Corrosion of Magnesium Alloys (Ed: G. Song ), Woodhead , Philadelphia, PA, USA, 2011, 403.
M. Moravej, D. Mantovani, Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities, Int. J. Mol. Sci. 2011, 12(7), 4250-4270; https://doi.org/10.3390/ijms12074250
Matthias Peuster; Carola Hesse; Tirza Schloo; Christoph Fink; Philipp Beerbaum; Christian von Schnakenburg. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials. 2006, 27(28): 4955-4962.
M. Peuster; P. Wohlsein; M. Brugmann; M. Ehlering; K. Seider; C. Fink; H. Brauer; A. Fischer; G. Hausdorf. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal results 6-18 months after implantation into New Zealand white rabbits. Heart. 2001, 86(5): 563-569.
R. Waksman; R. Pakala; R. Baffour; R. Seabron; D. Hellinga; F.O. Tio. Short-Term Effects of Biocorrodible Iron Stents in Porcine Coronary Arteries. Journal of Interventional Cardiology. 2008, 21(1): 15-20.
H. Hermawan; D. Dube; D. Mantovani. Degradable metallic biomaterials for cardiovascular applications. Wood head Publishing Limited, Canada, 2010: 379-404.
Carlo Di Mario; Huw Griffiths; Omer Goktekin; Nicolas peters; Jan Verbist; Marc Bosiers; Koen Deloose; Bernard Heublein; Roland Rohde; Victor Kasese; Charles Ilsley; Raimund Erbel. Drug-Eluting Bioabsorbable Magnesium Stent. Journal of Interventional Cardiology. 2004, 17(6): 391-395.
F.Witte; V. Kaese; H. Haferkamp; E. Switzer; A. Meyer-Lindenberg; C.J. Wirth; H. Windhagen. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005, 26(17): 3557-3563.
Patrick K. Bowen, Jaroslaw Drelich, Jeremy Goldman, Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents, Adv. Mater, 2013, 25, 2577-2582.
E. A. Brandes, Ed. Smithells Metals Reference Book , Butterworths , London 1983.
Schinhammer, M.; Anja C. Hanzi; Jorg F. Loffler; Peter J. Uggowitzer. Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomaterialia. 2010, 6(5): 1705-1713.
Liu, B.; Y.F. Zheng. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomaterialia. 2011, 7(3): 1407-1420.
Liu, B.; Y.F. Zheng; L. Ruan. In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Materials Letters. 2010, 65(3): 540-543.
Michael Schinhammer; Patrick Steiger; Frank Moszner; F. L¨offler; Peter J. Uggowitzer. Degradation performance of biodegradable Fe–Mn–C (-Pd) alloys, Materials Science & Engineering C. 2012, doi: 10.1016/j.msec.2012.10.013.
Hermawan, H.; Alamdari, H.; D. Mantovani; Dominique Dube; Iron-manganese: new class of metallic degradable biomaterials prepared by powder metallurgy. Powder Metallurgy. 2008, 51(1): 38-45.
Jaroslav Cˇapek, Dalibor Vojteˇch, Adela Oborna, Microstructural and mechanical properties of biodegradable iron foam prepared by powder metallurgy, Materials & Design 83 (2015) 468–482.
Li, Y., Jahr, H., Lietaert, K., Pavanram, P., Yilmaz, A., Fockaert, L.I., Leeflang, M.A., Pouran, B., Gonzalez-Garcia, Y., Weinans, H., Mol, J.M.C., Zhou, J., Zadpoor, A.A., Additively manufactured biodegradable porous iron, Acta Biomaterialia (2018), doi: https://doi.org/10.1016/j.actbio.2018.07.011.
Carluccio, Danilo; Bermingham, Michael; Kent, Damon; Demir, Ali Gökhan; Previtali, Barbara; Dargusch, Matthew S. (2019). Comparative Study of Pure Iron Manufactured by Selective Laser Melting, Laser Metal Deposition, and Casting Processes. Advanced Engineering Materials, (), adem.201900049–. doi:10.1002/adem.201900049
Zhu, S.; Huang N.; Xu L.; Zhang Y.; Liu H,; Lei Y.; Sun H.; Yao Y. Biocompatibility of Fe-O films synthesized by plasma immersion ion implantation and deposition. Surface and Coatings Technology. 2009, 203(10-11): 1523-1529.
Shengfa Zhu; Nan Huang; Hui Shu; Yanping Wu; Li Xu. Corrosion resistance and blood compatibility of lanthanum ion implanted pure iron by MEVVA. Applied Surface Science. 2009, 256(1): 99-104.
Chen Chang-Zi, Shi Xing-Hua, Zhang Peng-Cheng, Bin Bai, Leng Yong-Xiang, Nan Huang, The microstructure and properties of commercial pure iron modified by plasma nitriding. Solid State Ionics, 2008, 179, 971–974.
Chen, H., Zhang, E., Yang, K. Microstructure, corrosion properties and biocompatibility of calcium zinc phosphate coating on pure ion for biomedical application. Materials Science and Engineering C, 2014, 34, 201-206.
Tao Huang, Yufeng Zheng, Uniform and accelerated degradation of pure iron patterned by Pt disc arrays, Scientific Reports, 2016 | 6:23627 | DOI: 10.1038/srep23627.
Lin W, Zhang G, Cao P, Zhang D, Zheng Y, Wu R, Qin L, Wang G, Wen T., Cytotoxicity and its test methodology for a bioabsorbable nitrided iron stent. J Biomed Mater Res Part B 2015:103B:764–776.
F.L. Nie; Y.F. Zheng; S.C. Wei; C. Hu; G. Yang. In vitro Corrosion, Cytotoxicity and Hemocmpatibility of Bulk Nanocrystalline Pure Iron. Biomedical Materials. 2010, 5, 065015.
Cheng, J., Zheng, Y. In vitro study on newly designed biodegradable Fe-X composites (X=W, CNT) prepared by spark plasma sintering. Journal of Biomedical Materials Research Part B: Applied Biomaterials 101B, 2013, 485-497.
T. Huang, J. Cheng, Y.F. Zheng, In vitro degradation and biocompatibility of Fe-P and Fe-Pt composites fabricated by spark plasma sintering, Mater. Sci. Eng. C
(2014) 43–53, https://doi.org/10.1016/j.msec.2013.10.023.
Jurgeleit, Till, Quandt, Eckhard, Zamponi, Christiane (2015). Magnetron Sputtering a New Fabrication Method of Iron Based Biodegradable Implant Materials. Advances in Materials Science and Engineering, 2015(), 1–9. doi:10.1155/2015/294686.
Estrin, Y. and A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Materialia, 2013. 61(3): p. 782-817.
Maryam Moravej; Sofiene Amira; Frédéric Prima; Ahmed Rahem; Michel Fiset; Diego Mantovani. Effect of electrodeposition current density on the microstructure and the degradation of electroformed iron for degradable stents Mater. Sci. & Eng. B 176 (2011) 1812-1822.
Camillus Sunday Obayi, Ranna Tolouei, Afghany Mostavan, Carlo Paternoster, Stephane Turgeon, Boniface Adeleh Okorie, Daniel Oray Obikwelu & Diego Mantovani. Effect of Grain Sizes on Mechanical Properties and Biodegradation Behavior of Pure Iron for Cardiovascular Stent Application. Biomatter, 2016, 6:1, e959874, DOI :10.4161/21592527.2014.959874
K.D. Ralston; N.Birbilis; C.H.J. Davies. Revealing the relationship between grain size and corrosion rate of metal. Scripta Materialia. 2010, 63, 1201-1204.
M. Moravej; F.Prima; M. Fiset; D. Mantovani. Electroformed iron as new biomaterial for degradable stents: Development process and structure-properties relationship. Acta Biomaterialia. 2010, 6(5): 1726-1735.
M. Moravej; A. Purnama; M. Fiset; J. Couet; D. Mantovani. Electroformed pure iron as a new biomaterial for degradable stents: In vitro degradation and preliminary cell viability studies. Acta Biomaterialia. 2010, 6(5): 1843-1851.
Serruys PW, Kutryk MJB. Handbook of coronary stents. Martin Dunitz Ltd, London, 2000.
Murphy BP; Cuddy H; Harewood FJ; Connoley T. “The influence of grain size on the ductility of micro-scale stainless steel stent struts”, Journal of Materials Science: Materials in Medicine. 2006, Vol. 17, Number 1: pp 1-6..
Paul Roach; David Eglin; Kirsty Rohde; Carole C. Perry. Modern Biomaterials: a review – bulk properties and implications of surface modifications, J. Mater Sci: Mater Med. 2007, 18, 1263-1277.
Ayad S.; Boot-Handford; R., Humphries, M.J.; Kadler K.E.; Shuttleworth, A. The Extracellular Matrix Factsbook, Academic Press, San Diego, CA: 29, 1994.
Downloads
Published
How to Cite
License
Copyright (c) 2023 Journal of Nano and Materials Science Research
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.