Structural, Optical, and Vibrational Properties of (MnxMg1-xFe2O4) Spinel Ferrites

Authors

  • Hasnain Ali Institute of Physics, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
  • Fawad Ali National Institute of Vacuum Science and Technology, Islamabad, 44000, Pakistan
  • Shahbaz Afzal Department of Physics, University of Education Lahore, DG Khan Campus 32200, Pakistan
  • Haneef Shah Department of Physics, University of Education Lahore, DG Khan Campus 32200, Pakistan
  • Tahir Munir Institute of Physics, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
  • Sakhi G. Sarwar Centre of Excellence in Solid-State Physics, University of the Punjab, Lahore, Pakistan
  • Adezuka Yahaya Department of Physics, Federal College of Education, Okene, Kogi State, Nigeria
  • Lucky Imosobomeh Ikhioya Department of Physics and Astronomy, University of Nigeria Nsukka, 410001 Nsukka, Nigeria

DOI:

https://doi.org/10.20221/jnmsr.v2i1.18

Keywords:

spinel ferrites, magnetic materials, manganese-substituted ferrites, co-precipitation method

Abstract

The study explores the properties of MnxMg1-xFe2O4 spinel ferrites. A detailed investigation of the structural, optical, and vibrational properties was carried out for the synthesized samples using X-ray diffraction (XRD), UV-visible spectroscopy, and Fourier Transform Infrared Spectroscopy (FTIR), respectively. Samples with varying Mn content were observed and their effects on material properties. XRD analysis revealed crystal structure and phase purity. UV spectroscopy was used for optical characteristics study. The vibrational modes and bonding characteristics of the synthesized spinel ferrites were examined using Fourier Transform Infrared (FTIR) spectroscopy. The outcomes shed light on the potential applications of (MnxMg1-xFe2O4) spinel ferrites in various technological fields, such as electronics, magnetics, and sensing applications. Spinel ferrites' properties can be changed using the co-precipitation synthesis method, which has shown promise.

References

S. J. Salih and W. M. Mahmood, “Review on magnetic spinel ferrite (MFe2O4) nanoparticles: From synthesis to application,” Heliyon, vol. 9, no. 6, p. e16601, 2023, doi: 10.1016/j.heliyon.2023.e16601.

F. G. da Silva, J. Depeyrot, A. F. C. Campos, R. Aquino, D. Fiorani, and D. Peddis, “Structural and Magnetic Properties of Spinel Ferrite Nanoparticles,” Journal of Nanoscience and Nanotechnology, vol. 19, no. 8, pp. 4888–4902, 2019, doi: 10.1166/jnn.2019.16877.

H. Saqib, S. Rahman, R. Susilo, B. Chen, and N. Dai, “Structural, vibrational, electrical, and magnetic properties of mixed spinel ferrites Mg1-xZnxFe2O4 nanoparticles prepared by co-precipitation,” AIP Advances, vol. 9, no. 5, 2019, doi: 10.1063/1.5093221.

E. Suharyadi, E. A. Setiadi, N. Shabrina, T. Kato, and S. Iwata, “Magnetic properties and microstructures of polyethylene glycol (PEG)- coated cobalt ferrite (CoFe2O4) nanoparticles synthesized by coprecipitation method,” Adv Mat Res, vol. 896, pp. 126–133, 2014, doi: 10.4028/www.scientific.net/AMR.896.126.

R. K. Kotnala and J. Shah, Ferrite Materials: Nano toSpintronics Regime, vol. 23. Elsevier, 2015. doi: 10.1016/B978-0-444-63528-0.00004-8.

S. Singh, H. Chawla, A. Chandra, and S. Garg, “Magnetic hybrid nanoparticles for drug delivery,” Magnetic Nanoparticle-Based Hybrid Materials: Fundamentals and Applications, vol. 2, no. 3, pp. 319–342, 2021, doi: 10.1016/B978-0-12-823688-8.00034-X.

I. Larraza, M. López-Gónzalez, T. Corrales, and G. Marcelo, “Hybrid materials: Magnetite-Polyethylenimine-Montmorillonite, as magnetic adsorbents for Cr(VI) water treatment,” J Colloid Interface Sci, vol. 385, no. 1, pp. 24–33, 2012, doi: 10.1016/j.jcis.2012.06.050.

F. Saoud, “Superparamagnetic nanoparticles for synthesis and purification of polymers prepared via controlled/" living" radical polymerization (CLRP).” Stellenbosch: University of Stellenbosch, 2010.

M. Anbarasu, M. Anandan, E. Chinnasamy, V. Gopinath, and K. Balamurugan, “Synthesis and characterization of polyethylene glycol (PEG) coated Fe 3O4 nanoparticles by chemical co-precipitation method for biomedical applications,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 135, pp. 536–539, 2015, doi: 10.1016/j.saa.2014.07.059.

B. Feng et al., “Synthesis of Fe3O4/APTES/PEG diacid functionalized magnetic nanoparticles for MR imaging,” Colloids Surf A Physicochem Eng Asp, vol. 328, no. 1–3, pp. 52–59, 2008, doi: 10.1016/j.colsurfa.2008.06.024.

Wahajuddin and S. Arora, “Superparamagnetic iron oxide nanoparticles: Magnetic nanoplatforms as drug carriers,” Int J Nanomedicine, vol. 7, pp. 3445–3471, 2012, doi: 10.2147/IJN.S30320.

S. Hcini, A. Selmi, H. Rahmouni, A. Omri, and M. L. Bouazizi, “Structural, dielectric and complex impedance properties of T0.6Co0.4Fe2O4 (T=Ni, Mg) ferrite nanoparticles prepared by sol gel method,” Ceram Int, vol. 43, no. 2, pp. 2529–2536, 2017, doi: 10.1016/j.ceramint.2016.11.055.

Y. F. Shen, J. Tang, Z. H. Nie, Y. D. Wang, Y. Ren, and L. Zuo, “Tailoring size and structural distortion of Fe3O4 nanoparticles for the purification of contaminated water,” Bioresour Technol, vol. 100, no. 18, pp. 4139–4146, 2009, doi: 10.1016/j.biortech.2009.04.004.

X. Liang, H. Shi, X. Jia, Y. Yang, and X. Liu, “Dispersibility, Shape and Magnetic Properties of Nano-Fe<sub>3</sub>O<sub>4</sub> Particles,” Materials Sciences and Applications, vol. 02, no. 11, pp. 1644–1653, 2011, doi: 10.4236/msa.2011.211219.

Q. Chen, A. J. Rondinone, B. C. Chakoumakos, and Z. John Zhang, “Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation,” J Magn Magn Mater, vol. 194, no. 1, pp. 1–7, 1999, doi: 10.1016/S0304-8853(98)00585-X.

J. Kis-Csitári, Z. Kónya, and I. Kiricsi, “Sonochemical synthesis of inorganic nanoparticles,” NATO Science for Peace and Security Series B: Physics and Biophysics, vol. 6, no. August, pp. 369–372, 2008, doi: 10.1007/978-1-4020-8903-9-33.

B. Purnama, R. Kusuma, B. Legowo, Suharyana, and A. T. Wijayanta, “Identification of magnetic minerals in the fine-grain sediment on the Bengawan Solo River,” IOP Conf Ser Mater Sci Eng, vol. 333, no. 1, 2018, doi: 10.1088/1757-899X/333/1/012017.

R. Elangovan, V. Vijayan, S. Bakthavatsalam, K. Ramkumar, T. Sathish, and K. Sudhakar, “A Facile Synthesis of MgFe2O4/ZnS Heterojunction with Effectively Enhanced Visible Light Photocatalytic Activity for Degradation of Methylene Blue and Crystal Violet Dyes,” J Clust Sci, vol. 34, no. 2, pp. 991–999, 2022, doi: 10.1007/s10876-022-02271-0.

K. Kombaiah et al., “A Green approach: synthesis, characterization and opto-magnetic properties of MgxMn1−xFe2O4 spinel nanoparticles,” Journal of Materials Science: Materials in Electronics, vol. 28, no. 14, pp. 10321–10329, 2017, doi: 10.1007/s10854-017-6800-2.

M. Tadic et al., “Magnetic properties of hematite (α - Fe2O3) nanoparticles synthesized by sol-gel synthesis method: The influence of particle size and particle size distribution,” Journal of Electrical Engineering, vol. 70, no. 7, pp. 71–76, 2019, doi: 10.2478/jee-2019-0044.

M. Qayoom, K. A. Shah, A. H. Pandit, A. Firdous, and G. N. Dar, “Dielectric and electrical studies on iron oxide (α-Fe2O3) nanoparticles synthesized by modified solution combustion reaction for microwave applications,” J Electroceram, vol. 45, no. 1, pp. 7–14, 2020, doi: 10.1007/s10832-020-00219-2.

S. Afzal, S. Tehreem, T. Munir, S. G. Sarwar, and I. L. Ikhioya, “Impact of Transition Metal Doped Bismuth Oxide Nanocomposites on the Bandgap Energy for Photoanode Application,” vol. 2, no. 1, pp. 104–109, 2023.

V. M. Khot, A. B. Salunkhe, M. R. Phadatare, N. D. Thorat, and S. H. Pawar, “Low-temperature synthesis of MnxMg1-xFe 2O4(x = 0-1) nanoparticles: Cation distribution, structural and magnetic properties,” J Phys D Appl Phys, vol. 46, no. 5, 2013, doi: 10.1088/0022-3727/46/5/055303.

J. K. Rajput, P. Arora, G. Kaur, and M. Kaur, “CuFe2O4 magnetic heterogeneous nanocatalyst: Low power sonochemical-coprecipitation preparation and applications in synthesis of 4H-chromene-3-carbonitrile scaffolds,” Ultrason Sonochem, vol. 26, pp. 229–240, 2015, doi: 10.1016/j.ultsonch.2015.01.008.

G. Padmapriya, A. Manikandan, V. Krishnasamy, S. K. Jaganathan, and S. A. Antony, “Enhanced Catalytic Activity and Magnetic Properties of Spinel MnxZn1−xFe2O4(0.0 ≤ x ≤ 1.0) Nano-Photocatalysts by Microwave Irradiation Route,” J Supercond Nov Magn, vol. 29, no. 8, pp. 2141–2149, 2016, doi: 10.1007/s10948-016-3527-x.

G. Xian et al., “Synthesis of Spinel Ferrite MFe2O4 (M = Co, Cu, Mn, and Zn) for Persulfate Activation to Remove Aqueous Organics: Effects of M-Site Metal and Synthetic Method,” Front Chem, vol. 8, no. March, pp. 1–11, 2020, doi: 10.3389/fchem.2020.00177.

A. U. Agobi et al., “Optical and structural properties of graphene oxide-incorporated polyvinylpyrrolidone/copper ternary nanocomposites (PVP/Cu/GO) films,” Rev. Mex. Fis., vol. 69, no. 3, pp. 1–9, 2023, doi: 10.31349/RevMexFis.69.031001.

A. Ali, S. Afzal, T. Khaleeq, H. Shah, M. Usman, and L. Imosobomeh, “Synthesis and Characterization of Chitosan-Silver Nanocomposite Using Chemical Reduction Method and their Antibacterial Properties,” vol. 2, no. 1, pp. 117–122, 2023.

I. L. Ikhioya, S. O. Aisida, I. Ahmad, and F. I. Ezema, “The effect of molybdenum dopant on rare earth metal chalcogenide material,” Chem. Phys. Impact, vol. 7, no. April, p. 100269, 2023, doi: 10.1016/j.chphi.2023.100269.

I. L. Ikhioya and A. C. Nkele, “Results in Optics Properties of electrochemically-deposited NiTe films doped with molybdenum at varying temperatures,” Results Opt., vol. 12, no. April, p. 100494, 2023, doi: 10.1016/j.rio.2023.100494.

I. L. Ikhioya and A. C. Nkele, “Results in Optics A novel synthesis of hydrothermally-prepared yttrium selenide and erbium selenide nanomaterials doped with magnesium,” Results Opt., vol. 13, no. September, p. 100555, 2023, doi: 10.1016/j.rio.2023.100555.

I. L. Ikhioya et al., “Asian Journal of Nanoscience and Original Research Article Impact of precursor temperature on physical properties of molybdenum doped nickel telluride metal chalcogenide material,” vol. 2, pp. 156–167, 2023, doi: 10.26655/AJNANOMAT.2023.2.5.

E. N. Josephine, O. S. Ikponmwosa, and I. L. Ikhioya, “Asian Journal of Nanoscience and Original Research Article Enhanced physical properties of SnS / SnO semiconductor material,” vol. 3, pp. 199–212, 2023, doi: 10.26655/AJNANOMAT.2023.3.3.

E. O. Ojegu, O. B. Odia, M. O. Osiele, A. E. Godfrey, and I. L. Ikhioya, “Effect of precursor temperature on electrochemically deposited zirconium doped chromium telluride using a standard three-electrode system,” vol. 14, no. 11, pp. 1148–1159, 2023.

S. O. Samuel, M. F. Lagbegha-ebi, E. P. Ogherohwo, and I. L. Ikhioya, “Improve physical properties of zirconium doped strontium sulphide for optoelectronic purpose,” Results Opt., vol. 13, no. June, p. 100518, 2023, doi: 10.1016/j.rio.2023.100518.

H. Shah, S. Afzal, M. Usman, K. Shahzad, and I. L. Ikhioya, “Impact of Annealing Temperature on Lanthanum Erbium Telluride (La0.1Er0.2Te0.2) Nanoparticles Synthesized via Hydrothermal Approach,” Adv. J. Chem. Sect. A, vol. 6, no. 4, pp. 342–351, 2023, doi: 10.22034/AJCA.2023.407424.1386.

K. I. Udofia, I. L. Ikhioya, D. N. Okoli, and J. Azubike, “Asian Journal of Nanoscience and Original Research Article Impact of doping on the physical properties of PbSe chalcogenide material for photovoltaic application,” vol. 2, pp. 135–147, 2023, doi: 10.26655/AJNANOMAT.2023.2.3.

Downloads

Published

2024-02-13

How to Cite

Ali, H., Ali, F., Afzal, S., Shah, H., Munir, T., Sarwar, S. G., … Ikhioya, L. I. . (2024). Structural, Optical, and Vibrational Properties of (MnxMg1-xFe2O4) Spinel Ferrites . Journal of Nano and Materials Science Research, 2(1), 131–137. https://doi.org/10.20221/jnmsr.v2i1.18

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.